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Abstract

We present an adversarial domain adaptation based deep learning approach for automatic tumor 

segmentation from T2-weighted MRI. Our approach is composed of two steps: (i) a tumor-aware 

unsupervised cross-domain adaptation (CT to MRI), followed by (ii) semi-supervised tumor 

segmentation using Unet trained with synthesized and limited number of original MRIs. We 

introduced a novel target specific loss, called tumor-aware loss, for unsupervised cross-domain 

adaptation that helps to preserve tumors on synthesized MRIs produced from CT images. In 

comparison, state-of-the art adversarial networks trained without our tumor-aware loss produced 

MRIs with ill-preserved or missing tumors. All networks were trained using labeled CT images 

from 377 patients with non-small cell lung cancer obtained from the Cancer Imaging Archive and 

unlabeled T2w MRIs from a completely unrelated cohort of 6 patients with pre-treatment and 36 

on-treatment scans. Next, we combined 6 labeled pre-treatment MRI scans with the synthesized 

MRIs to boost tumor segmentation accuracy through semi-supervised learning. Semi-supervised 

training of cycle-GAN produced a segmentation accuracy of 0.66 computed using Dice Score 

Coefficient (DSC). Our method trained with only synthesized MRIs produced an accuracy of 0.74 

while the same method trained in semi-supervised setting produced the best accuracy of 0.80 on 

test. Our results show that tumor-aware adversarial domain adaptation helps to achieve reasonably 

accurate cancer segmentation from limited MRI data by leveraging large CT datasets.

1 Introduction

MRI-guided radiotherapy is an emerging technology for improving treatment accuracy over 

conventional CT-based radiotherapy due to better soft-tissue contrast in MR compared to CT 

images. Real-time and accurate tumor segmentation on MRI can help to deliver high dose to 

tumors while reducing normal tissue dose. However, as MRI-guided radiotherapy is not used 

in standard-of-care, only very few MRIs are available for training. Therefore, we developed 

an adversarial domain adaptation from large CT datasets for tumor segmentation on MRI.
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Although deep neural networks excel in learning from large amounts of (labeled) data, their 

accuracy is reduced when applied to novel datasets or domains[1]. Differences between 

source and target domain distribution is called domain shift. Typically used fine-tuning 

methods require prohibitively large labeled data in the target domain. As an alternative, 

domain adaptation methods attempt to minimize domain shift either by feature sharing[2] or 

by learning to reconstruct the target from source domain[3, 4]. In essence, domain 

adaptation methods learn the marginal distributions [5] to transform source to target domain.

The problems of domain shift are exacerbated in medical images, where imaging modalities 

capture physical properties of the underlying anatomy differently (eg. CT vs. MRI). For 

example, whereas bones appear hyper-dense on CT and dark on MRI, tumors appear with 

similar contrast as normal soft-tissue on CT but have a distinct appearance on MRI (Fig. 1 

(a) and (b)). Consequently, learning the marginal distributions of the domains alone may not 

be sufficient. Cross-domain adaptation of highly different modalities, has been applied in 

medical image analysis for image synthesis using paired images [6] and unpaired images 

[7], as well as for segmentation [8, 9]. However, all aforementioned approaches aim to only 

synthesize images that match the marginal but not the structure-specific conditional 

distribution such as tumors. Therefore, segmentation/classification using such synthetic 

images will lead to lower accuracy.

Therefore, we introduced a novel target specific loss, called tumor-aware loss, for 

unsupervised cross-domain adaptation that helps to preserve tumors on synthesized MRIs 

produced from CT images (Fig. 1(d)), which cannot be captured with just the cycle-loss 

(Fig. 1(c)).

2 Method

Our objective is to solve the problem of learning to segment tumors from MR images 

through domain adaptation from CT to MRI, where we have access to a reasonably sized 

labeled data in the source domain (XCT , yCT) but are provided with very limited number of 

target samples XMRI ≪ XCT and fewer labels yMR. Our solution first employs tumor-aware 

unsupervised cross-domain adaptation to synthesize a reasonably large number of MRI from 

CT through adversarial training. Second, we combine the synthesized MRI with a fraction of 

real MRI with corresponding labels and train a Unet[10] for generating tumor segmentation 

as outlined in Fig. 2.

2.1 Step 1: MRI synthesis using tumor-aware unsupervised cross domain adaptation

The first step is to learn a mapping GCT→M RI that synthesizes MRI from the CT images to 

fool a discriminator DM RI using adversarial training [11]. Additionally, we compute an 

adversarial loss Ladv
CT  for synthesizing CT from MRI by simultaneously training a network 

that learns a mapping GMRI→CT. The adversarial loss, Ladv
M RI, for synthesizing MRI from CT, 

and Ladv
CT , for synthesizing CT from MRI, are computed as:
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Ladv
M RI GCT M RI, DM RI, XM RI, XCT = 𝔼xm XM RI

log DM RI xm

+ 𝔼xc XCT
log(1 − DM RI(GCT M RI xc

Ladv
CT GM RI CT, DCT, XCT, XM RI = 𝔼xc XCT

log DCT xc

+ 𝔼xm XM RI
log(1 − DCT(GM RI CT xm

(1)

where xc and xm are real images sampled from the CT (XCT ) and MRI (XMRI) domains, 

respectively. The total adversarial loss (Fig. 2 (purple ellipse)) is then computed as the 

summation of the two losses as Ladv = Ladv
M RI + Ladv

CT . We also compute a cycle consistency 

loss [5] to regularize the images synthesized through independent training of the two 

networks. By letting the synthesized images be x′m = GCT M RI(xc) and 

x′c = GM RI CT(xm), the cycle consistency loss Lcyc is calculated as:

Lcyc GCT M RI, GM RI CT, XCT, XM RI = 𝔼xc XCT
GM RI CT(x′m) − xc 1

+𝔼xm XM RI
GCT M RI(x′c) − xm 1 .

(2)

The cycle consistency and adversarial loss only constrain the model to learn a global 

mapping that matches the marginal distribution but not the conditional distribution 

pertaining to individual structures such as the tumors. Therefore, a model trained using these 

losses does not need to preserve tumors, which can lead to either deterioration or total loss 

of tumors in the synthesized MRIs (Fig. 1(c)). Therefore, we introduced a tumor-aware loss 

that forces the network to preserve the tumors. To be specific, the tumor-aware loss is 

composed of a tumor loss (Fig. 2 (red ellipse)) and a feature loss (Fig. 2 (orange ellipse)). 

We compute the tumor loss by training two parallel tumor detection networks using 

simplified models of the Unet [10] for CT (UCT ) and the synthesized MRI (UMRI). The 

tumor loss constrains the CT and synthetic MRI-based Unets to produce similar tumor 

segmentations, thereby, preserving the tumors and is computed as:

Ltumor = 𝔼xc XCT , yc yCT
logP yc GCT M RI xc +

𝔼xc XCT , yc yCT
logP yc XCT .

(3)

On the other hand, the tumor feature loss Lfeat forces the high-level features of XCT and 

XCT
M RI to be shared by using a constraint inspired by [12] as:

L f eat(xc XCT) = 1
C × H × W ϕCT(xc) − ϕM RI GCT M RI xc

2
. (4)

Jiang et al. Page 3

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ϕCT and ϕMRI are the high-level features extracted from the UCT and UMRI, 

respectively; C, H and W indicate the size of the feature. The total loss is then expressed as:

Ltotal = Ladv + λcycLcyc + λtumorLtumor + λ f eatL f eat, (5)

Where λcyc, λtumor and λfeat are the weighting coefficients for each lose. During training, 

we alternatively updated the domaine tranfer or generator network G, the discriminator D, 

and the tumor constraint network U with the following gradients, 

−ΔθG
(Ladv + λcycLcyc + λtumorLtumor + λ f eatL f eat), −ΔθD

(Ladv) and

−ΔθU
(Ltumor + λ f eatL f eat)

2.2 Step 2: Semi-supervised tumor segmentation from MRI

The synthesized MRI from the first step were combined with a small set of real MRI with 

labels (XM RI and yM RI in Fig. 2) to train a U-net [10] using Dice loss [13] (Fig. 2 (blue 

ellipse)) to generate tumor segmentation. Adversarial network optimization for MRI 

synthesis was frozen prior to semi-supervised tumor segmentation training to prevent 

leakage of MRI label information.

2.3 Network Structure and Implementation

The generators G and discriminators D for CT and MRI synthesis networks were 

implemented similar to that in [5]. We tied the penultimate layer in UMRI and UCT. The 

details of all networks are shown in the supplementary documents. Pytorch library [14] was 

used for implementing the proposed networks, which were trained on Nvidia GTX 1080Ti 

of 12 GB memory with a batch size of 1 during image transfer and batch size of 10 during 

semi-supervised segmentation. The ADAM algorithm [15] with an initial learning rate of 

1e-4 was used during training. We set λcyc=10, λtumor=5 and λfeat=1.

3 Experiments and Results

3.1 Ablation tests

We tested the impact of adding tumor-aware loss to the cycle loss (proposed vs. cycle-GAN 

[5] vs. masked-cycle-GAN [8]). Images synthesized using aforementioned networks were 

trained to segment using semi-supervised learning by combining with a limited number of 

real MRI. We call adversarial synthesis [8] that combined tumor labels as an additional 

channel with the original images as masked-cycle-GAN. We also evaluated the effect of 

adding a limited number of original MRI to the synthesized MRI on segmentation accuracy 

(tumor-aware with semi-supervised vs. tumor-aware with unsupervised training). We 

benchmarked the lowest achievable segmentation accuracy by training a network with only 

the pre-treatment (or week one) MRI.
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3.2 Datasets

The image synthesis networks were trained using contrast-enhanced CT images with expert 

delineated tumors from 377 patients with non-small cell lung cancer (NSCLC) [16] available 

from The Cancer Imaging Archive (TCIA) [17], and an unrelated cohort of 6 patients 

scanned with T2w MRI at our clinic before and during treatment every week (n=7) with 

radiation therapy. Masked cycle-GANs used both tumor labels and the images as additional 

channels even for image synthesis training. Image regions enclosing the tumors were 

extracted and rescaled to 256×256 to produce 32000 CT image slices and 9696 T2w MR 

image slices. Only 1536 MR images from pre-treatment MRI were used for semi-supervised 

segmentation training of all networks. Segmentation validation was performed on the 

subsequent on-treatment MRIs (n=36) from the same 6 patients. Test was performed using 

28 MRIs consisting of longitudinal scans (7,7,6) from 3 patients and pre-treatment scans 

from 8 patients not used in training. Tumor segmentation accuracy was evaluated by 

comparing to expert delineations using the Dice Score Coe cient (DSC), and the Hausdorff 

Distance 95%(HD95).

3.3 MR image synthesis results

Fig. 3 shows the representative qualitative results of synthesized MRI produced using only 

the cycle-GAN (Fig. 3(b)), masked cycle-GAN (Fig. 3(c)) and using our method (Fig. 3(d)). 

As seen, our method best preserves the anatomical details between CT and MRI. 

Quantitative evaluation using the Kullback - Leibler (KL) divergence computed from tumor 

regions between synthesized and original MRI, used for training, confirmed that our method 

resulted in the best match of tumor distribution with the lowest KL divergence of 0.069 

compared with those obtained using the cycle-GAN (1.69) and masked cycle-GAN (0.32).

3.4 Segmentation results

Fig. 4 shows the segmentations generated using the various methods (yellow contours) for 

three representative cases from the test and validation sets, together with the expert 

delineations (red contours). As shown in Table 1, our approach outperformed cycle GAN 

irrespective of training without (unsupervised) or with (semi-supervised) labeled target data. 

Semi-supervised segmentation outperformed all methods in both test and validation datasets.

4 Discussion

In this work, we introduced a novel target-specific, tumor-aware loss for synthesizing MR 

images from unpaired CT datasets using unsupervised cross-domain adaptation. The tumor-

aware loss forces the network to retain tumors that are typically lost when using only the 

cycle-loss and leads to accurate tumor segmentation. Although applied to lung tumors, our 

method is applicable to other structures and organs. Segmentation accuracy of our approach 

trained with only synthesized MRIs exceeded other methods trained in a semi-supervised 

manner. Adding small set of labeled target domain data further boosts accuracy. The 

validation set produced lower but not significantly di erent (p=0.1) DSC accuracy than the 

test set due to significantly smaller (p=0.0004) tumor volumes in validation (mean 37.66cc) 

when compared with the test set (mean 68.2cc). Our results showed that masked-cycle-GAN 

produced lower test performance compared to basic cycle-GAN, possibly due to poor 
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modeling from highly unbalanced CT and MR datasets. As a limitation, our approach only 

forces the synthesized MRIs to preserve tumors but not the MR intensity distribution within 

tumors. Such modeling would require learning the mapping for individual scan 

manufacturers, magnet strengths and coil placements which was outside the scope of this 

work. Additionally, synthesized images irrespective of the chosen method do not produce a 

one-to-one pixel mapping from CT to MRI similar to [8]. There is also room for improving 

the segmentation accuracy by exploring more advanced segmentation models, e.g. 

boundary-aware fully convolutional networks (FCN)[18].

5 Conclusions

In this work, we proposed a tumor-aware, adversarial domain adaptation method using 

unpaired CT and MR images for generating segmentations from MRI. Our approach 

preserved tumors on synthesized MRI and generated the best segmentation performance 

compared with state-of-the-art adversarial cross-domain adaptation. Our results suggest 

feasibility for lung tumor segmentation from MRI trained using MRI synthesized from CT.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
MRI synthesized from a representative (a) CT image using (c) cycle-GAN[5] and (d) 

proposed method. The corresponding MRI scan for (a) is shown in (b). As shown, the 

proposed method (d) using tumor-aware loss helps to fully preserve tumor in the synthesized 

MRI compared with (c).
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Fig. 2: 

Approach overview. XCT and XMRI are the real CT and MRI; XCT
M RI and XM RI

CT  are the 

synthesized MR and CT images; yCT is the CT image label; GCT→MRI and GMRI→CT are 

the CT and MRI transfer networks; XM RI and yM RI are a small sample set from the real 

MRI, used to train semi-supervised segmentation.
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Fig. 3: 
MRI synthesized from CT using different deep learning methods. The red contour indicates 

the manually delineated tumor region in the NSCLC datasets [16].(a) CT image; (b) cycle-

GAN [5]; (c) Masked cycle-GAN [8]; (d) Proposed.
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Fig. 4: 
Segmentation results on the representative examples from the validation and test set of 

different methods. The red contour stands for the expert delineations and the yellow contour 

stands for the segmentation results. (a) segmentation with only week 1 MRI; (b) 

segmentation using MRI synthesized by cycle-GAN [5]; (c) segmentation using MRI 

synthesized by masked cycle-GAN [8]; (d) tumor-aware unsupervised learning; (e) tumor-

aware semi-supervised learning
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Table 1:

Segmentation accuracy

Validation Test

Method DSC HD95 mm DSC HD95 mm

Week one only 0.63±0.27 7.22±7.19 0.55±0.25 13.23±0.75

cycle-GAN [5] 0.57±0.24 11.41±5.57 0.66±0.16 11.91±4.44

masked cycle-GAN [8] 0.67±0.21 7.78=b4.40 0.63±0.24 11.65±6.53

Tumor aware unsupervised 0.62±0.26 7.47±4.66 0.74±0.15 8.88=b4.83

Tumor aware semi-supervised 0.70±0.19 5.88±2.88 0.80±0.08 7.16±4.52
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