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Abstract. Real-time localization of prostate gland in trans-rectal ul-
trasound images is a key technology that is required to automate the
ultrasound guided prostate biopsy procedures. In this paper, we propose
a new deep learning based approach which is aimed at localizing sev-
eral prostate landmarks efficiently and robustly. We propose a multitask
learning approach primarily to make the overall algorithm more contex-
tually aware. In this approach, we not only consider the explicit learning
of landmark locations, but also build-in a mechanism to learn the con-
tour of the prostate. This multitask learning is further coupled with an
adversarial arm to promote the generation of feasible structures. We have
trained this network using ∼4000 labeled trans-rectal ultrasound images
and tested on an independent set of images with ground truth landmark
locations. We have achieved an overall Dice score of 92.6% for the ad-
versarially trained multitask approach, which is significantly better than
the Dice score of 88.3% obtained by only learning of landmark locations.
The overall mean distance error using the adversarial multitask approach
has also improved by 20% while reducing the standard deviation of the
error compared to learning landmark locations only. In terms of compu-
tational complexity both approaches can process the images in real-time
using standard computer with a standard CUDA enabled GPU.

1 Introduction

Multi-parametric MRI can greatly improve detection of prostate cancer and can
also lead to a more accurate biopsy verdict by highlighting areas of suspicion
[1]. Unfortunately, MR-guided procedures are costly and restrictive, whereas
ultrasound guidance offers more flexibility and can exploit the added MR infor-
mation through fusion [9]. A key step in the registration of diagnostic MR and
live trans-rectal ultrasound is the automatic localization of the prostate gland
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within the ultrasound image in real-time. This localization could be achieved by
automatically identifying a set of image landmarks on the border of the prostate
gland. This task by itself is in general challenging due to low tissue contrast
leading to fuzzy boundaries and varying prostate gland sizes in the population.
Furthermore, prostate calcifications cause shadowing within the ultrasound im-
age hindering the observation of the gland boundary. An example of this case is
shown in Fig. 1 (a). Learning these landmark locations is further complicated by
inherent label noise as these landmarks are not defined with absolute certainty.
A small inter-slice variability in prostate shape could result in rather larger de-
viation in the landmark locations, which are placed by expert annotators. Our
analysis of this uncertainty is further explained in Section 2.

Through initial set of experiments we observed that individual landmark de-
tection/regression does not yield accurate results as the global context in terms
of how the landmarks are connected is not properly utilized. Even for expert
annotators, it is essential to use the context to place the challenging landmarks,
specifically the ones in regions with little signal or cues. Incorporating topologi-
cal/spatial priors into landmark detection tasks is an active area of research with
broad applications. Conditional Random Fields incorporating priors have been
used with deep learning to improve delineation tasks in computer vision [11,3]. In
medical imaging, improving landmark and contour localization tasks through the
use of novel deep learning architectures has been presented in [6,10]. In particu-
lar in [10], the authors considered the sequential detection of prostate boundary
through the use of recurrent neural networks in polar coordinate transformed
images; however, their method assumes that the prostate is already localized
and cropped.

In this work we propose a deep adversarial multitask learning approach to
address the challenges associated with robust localization of prostate landmarks.
Our design aims to improve performance in regions, where the boundary is am-
biguous by using the spatial context to inform landmark placement. Multitask
learning provides an effective way to bias a network to learn additional informa-
tion that can be useful for the original task through the use of auxiliary tasks
[2]. In particular, to bring in the global context, we learn to predict the complete
boundary contour in addition to the location of each landmark to enforce the
overall algorithm to be more contextually aware. This multitasking network is
further coupled by discriminator network that provides feedback regarding the
feasibility of predicted contours. Our work shares similarities with [4], where the
authors used multitasking with adversarial regularization in human pose esti-
mation in an extensive network. Unlike the method in [4], our approach is easily
trainable and can perform at high frame rates and compared to [10], it does not
require the localization of the prostate gland beforehand.

2 Methods

This study includes data from trans-rectal ultrasound examinations of 32 pa-
tients, resulting in 4799 images. Six landmarks that are distributed on the



prostate boundary are marked by expert annotators. In particular, the land-
mark locations are chosen to cover the anterior section of the gland (close to
bladder), posterior section (close to rectum), and left and right extend of the
gland considering the shape of the probe pressing into the prostate. Examples
of annotations can be seen in Fig. 1 (a). Nonetheless the landmarks cannot be
placed with complete certainty due to poor boundaries, missing defining fea-
tures, shadowing and other physiological occurrences such as calcifications. We
characterized this landmark annotation uncertainty by measuring the change in
landmark position in successive frames. The mean and standard deviation for
each landmark is given in Table 1. It is understood that part of this positional
difference is due to probe and patient movement but nevertheless they can be
treated as a lower bound for the localization error that can be achieved.

Each image is acquired as part of a 2D sweep across the prostate and all
images were resampled to have a resolution of 0.169 mm/pixel and then padded
or cropped so that the resulting image size is 512× 512. Training data is tripled
via augmentation with translation (± 30-70 pixels) plus noise (σ = 0.05) and
rotation (± 4-7 ◦) plus noise (σ = 0.05). We split the data into 3 sets: 23 patients
for training (3717 images, 77%), 6 patients for validation (853 images, 18%), and
3 patients for testing (229 images, 5%). For all the methods explained below the
ultrasound data is given to the network as singe slices.
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Fig. 1: (a) Ultrasound images with target labels: 2D Gaussian landmarks (center,
green) and contours (right, green). (b) Each pixel has a distribution over 7
classes: 6 landmark classes and the background class. Moving away from the
center of a landmark, the landmark probability decreases and the background
probability increases.

2.1 Baseline Approach for Landmark Detection

Given the landmark locations, our approach takes a classification approach
through the use of a shared background in locating the landmarks rather than
the classical regression approach. The network has a 5 layer convolutional en-
coder and corresponding decoder with 5 × 5 kernels, padding of 2, stride of 1,
and a pooling factor of 2 at each layer. The number of filters in the first layer
is 32; this doubles with every convolutional layer in the encoder to a maximum
of 512. The decoder halves the number of filters with each convolutional layer.



The final output is convolved with a 1 × 1 kernel into 7 channels (one for each
landmark and a background class). The configuration of the convolutional, batch
normalizing, rectifying, and pooling layers can be seen in Fig. 2.

We model each landmark as a 2D Gaussian function centered on the land-
mark. The standard deviation of this Gaussian can in part incorporate the
uncertainty involved in the landmark locations. In contrast to the regression
approaches that regress locations or probability maps independently for each
landmark, here we take a classification approach which couples the estimation
through a shared background. For each pixel in the ultrasound image, we assign
a probability distribution over 7 classes, where we treat each landmark and the
background as separate classes. For a pixel that is at the center of a Gaussian
for a landmark, the probability for that landmark class is 1 whereas rest of the
probabilities are set to zero. These probabilities are obtained by independently
normalizing each Gaussian distribution so that the maximum of the Gaussian is
1. Similarly for a pixel that does not overlap with any of the Gaussian functions,
the background class has probability 1 and rest of the classes are set to zero. For
a pixel that overlaps with one of the landmarks but not necessarily at the center,
the probability distribution over the classes is shared between the corresponding
landmark class and the background class. This is illustrated in Fig. 1 (b). This
framework can be trivially extended to scenarios where the Gaussian functions
for the landmarks overlap. We learn a mapping of training images x in train-
ing set X that represents the probability distribution of every pixel in x over
the classes. This mapping, Slm (x), is learnt through the minimization of the
following supervised loss where Ylm denotes the training set labels:

Llm = −E(x,ylm)∼(X,Ylm)[logSlm (x)]. (1)

During test time the landmark locations are obtained by processing the out-
put maps, i.e., by extracting the maxima. The joint prediction of landmark and
background classes could help the network become more aware of the positions
of each landmark relative to one another. However, this background class encom-
passes the entire space wherever a landmark does not exist. As such, it does not
explicitly relate the points or highlight specific image features that are relevant
to the connections between points (e.g. organ contour).

2.2 Multitask Learning for Joint Landmark and Contour Detection

When deciding landmark location, expert annotators/clinicians are equipped
with the prior knowledge that the landmarks exist along the prostate boundary
which is a smooth, closed contour. Motivated by this intuition we identify two
distinct priors: First, the points lie along the prostate boundary, and then this
boundary must form a smooth, closed contour despite occlusions. We incorpo-
rate these priors through multitask learning and the use of an adversarial cost
function.

In multitask learning, the network must identify a set of auxiliary labels in
addition to the main labels. The main labels (in this case landmarks) help the
network to learn the appearance of the landmarks; meanwhile the auxiliary labels
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Fig. 2: Our baseline network has an encoder-decoder architecture where the re-
ceptive field size is large enough to contain the entire prostate. The multitask
network outputs a boundary contour along with the landmarks which is then
fed to a discriminator network to evaluate its similarity to training set samples.

should promote learning of complementary cues that the network may otherwise
ignore. A fuzzy contour following the prostate prostate boundary obtained by
Gaussian blurring the spline generated by connecting the main landmark labels is
used as an auxiliary label to incorporate the first spatial prior, that all landmarks
lie on the prostate boundary. The goal of the multitask addition is to bias the
network’s features such that prostate boundary detection is enhanced. Since
the boundary overlaps directly with the landmarks, the auxiliary task lends
itself well to exploitation in the shared parameter representation. Fig. 2 displays
the addition of the auxiliary label for the multitask framework. Note that the
network size does not increase, except for the final layer, because the parameters
are shared between both tasks.

Similar to the landmark setup, we learn a mapping of training images, Scnt (x),
representing the likelihood of being a contour pixel by minimizing the following
supervised loss, where Ycnt denotes the training set labels associated with the
contour: Lcnt = −E(x,ycnt)∼(X,Ycnt)[logScnt (x)]. (2)

Discriminator Network

While the multitask framework aims to increase the network’s awareness of the
prostate boundary features, it does not enforce any constraint on the shape of
the predicted contour. As such, a discriminator network is added to motivate
fulfillment of the second prior, that the boundary is a smooth closed shape. This
is helpful because the low tissue contrast can make it challenging for the bound-
ary detection (learned by the multitask network) to give clean estimates without
false positives. The discriminator network is trained in a conditional style where
the input training image is provided together with the network generated or the



real contour. The design is similar to the encoder of the main encoder-decoder
network with the difference that the discriminator network is extended one layer
further and the first 3 layers have a pooling factor of 4 instead of 2. These changes
are made to rapidly discard high resolution details and focus the discriminator’s
evaluation on the large scale appearance. We then define the discriminator loss
as follows:

LadvD
= −E(x,ycnt)∼(X,Ycnt)[logD (x,ycnt)]

−E(x∼X)[log (1−D (x, Scnt(x)))]. (3)

In [5], the authors defined the generator loss as the negative of the discrimi-
nator loss defined in Eqn. 3, resulting in a min-max problem over the generator
and discriminator parameters. The authors in [5] (and several others [7,8]) have
also stated the difficulty with the min-max optimization problem and suggested
maximizing the log probability of the discriminator being mistaken as the gen-
erator loss. This corresponds to the following adversarial loss for the landmark
and contour network S:

LadvS
= −E(x∼X)[logD (x, Scnt(x))]. (4)

Adversarial Landmark and Contour Detection Framework

The landmark and contour detection network is trained by minimizing the fol-
lowing functional with respect to its parameters θS :

arg min
θS

Ltotal = Llm + λ1Lcnt + λ2LadvS
(5)

The discriminator is trained by minimizing LadvD
with respect to its parameters

θD. We optimize these two losses in an alternating manner by keeping θS fixed
in the optimization of the discriminator and θD fixed in the optimization of the
detector network. In our experiments, we picked λ1 = 1 and λ2 = 0.02 using
cross validation.

3 Results & Discussion

Landmark location has a range of acceptable solutions on the prostate boundary
that is also visible in the noise of the annotated labels. As such the Dice score
between the spline interpolated prostate masks is used as the primary evalua-
tion metric. In addition, the Euclidean distance between predictions and targets
and the 80th percentile of this distance are calculated. Baseline Dice score and
average landmark error are 88.3% and 3.56 mm respectively. With the multitask
approach, these scores are improved to 90.2% and 3.12 mm respectively. The
addition of adversarial training further improves the results to 92.6% and 2.88
mm. In particular, note the large improvement for landmark 4 (Table 1). This



is the most anterior landmark (close to bladder) which generally has the high-
est error due to shadowing. Also, the improvement in the standard deviation of
the Dice score indicates that the adversarially regulated multitask framework
produces the most robust predictions.

Table 1: Landmark annotation error together with error for baseline, multitask,
and adversarial multitask methods.

Metric Noise Baseline Multitask Multitask GAN

Mean Landmark
Error ± S.D.

0.98 ± 0.28 2.11 ± 1.41 1.94 ± 1.36 1.77 ± 1.43
1.45 ± 0.44 2.33 ± 1.28 1.90 ± 1.13 1.97 ± 0.96
2.17 ± 0.60 4.03 ± 5.13 3.38 ± 3.68 3.41 ± 3.17
1.99 ± 0.47 6.29 ± 6.13 6.72 ± 5.59 5.01 ± 3.90
2.19 ± 0.74 3.44 ± 2.77 2.73 ± 1.94 3.09 ± 2.43
1.43 ± 0.54 3.21 ± 4.05 2.02 ± 1.85 2.01 ± 1.57

Overall Avg. 1.70 ± 0.51 3.56 ± 3.46 3.12 ± 2.60 2.88 ± 2.24

80th Percentile

1.42 3.19 3.04 2.75
2.05 3.44 2.85 2.72
3.17 4.59 4.41 5.08
2.87 8.31 9.09 7.75
3.14 4.83 4.27 4.68
2.03 3.71 2.75 2.90

Overall Avg. 2.45 4.68 4.42 4.32

Avg. Dice Score ± S.D. - 88.3% ± 7.3% 90.2% ± 7.2% 92.6% ± 3.6%

Fig. 3 displays examples of predictions given by each method. In the top
row, the plain multitask approach is able to improve the right-most landmark
placement, but the most anterior landmark location is still highly inaccurate.
In such cases, features learned for boundary detection can mistakenly highlight
areas with high contrast, e.g. calcification within the prostate. The adversarially
trained detector improves the landmark placement significantly. In the bottom
row, the boundary prediction is also hindered by shadowing, but the proposed
framework still improves the overall shape of the contour along with the land-
mark placements.

The multitask learning framework helps biasing the landmark placement to-
ward the prostate boundary through shared weights of two tasks namely land-
mark detection and boundary estimation. As the predicted contour is not always
of high quality especially when there is signal dropouts, an adversarial regular-
ization is used to enhance boundary estimations and subsequently provide a
more accurate landmark detection.



Fig. 3: Ultrasound images with target (green) and prediction (blue diamonds,
connected by spline) overlays. Red arrows indicate corrections of gross er-
rors. Multitask predictions include an overlay of the contour prediction (blue
heatmap). Adversarially regulated multitask learning produces more complete
contours resulting in better landmark placement compared its plain counterpart.
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