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Abstract

Recent studies have suggested the central role of small airway destruction in the pathogenesis of 

COPD leading to further parenchymal destruction. This evidence has sparked the interest in in-

vivo assessment of small airway disease overall at the early onset of the disease. The parametric 

response mapping (PRM) technique has been proposed to distinguish gas trapping due to small 

airway disease from low attenuation areas due to emphysema. Despite its success, the PRM 

technique shows some limitations that are precluding the interpretation of its results. The density 

value used to assess gas trapping highly depends on acquisition parameters, such as dose and 

reconstruction kernel, and changes in body size, that introduce inhomogeneous photon absorption 

patterns. In particular, many studies using PRM employ inspiratory and expiratory images that are 

obtained at different dose levels. Emphysema impact in early disease may be confounded with the 

gas trapping due to the noise introduced by differences in the acquisition during the PRM. In this 

work, we propose a CT harmonization technique to remove the nuisance factors to distinguish 

between small airway disease and emphysema. Our results show that the measurements based on 

CT harmonization provide an increase in the detection of both emphysema and airway disease, 

resulting in a statistically significant impact of both components and a better association with lung 

function measures.
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a complex syndrome with widely 

varying clinical and imaging characteristics. The chronic airflow limitation of COPD is 

caused by a mixture of small airway disease and parenchymal destruction (emphysema). 

COPD is a major cause of morbidity and mortality. Despite declines in smoking, mortality 

from COPD continues to increase and is now the third leading cause of death in the US. 

Recent studies have suggested that the central role of small airway disease in the 

pathogenesis of COPD leads to additional parenchymal destruction [1]. This evidence has 
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sparked the interest in in-vivo assessment of small airway disease overall at the early onset 

of the disease.

Computed Tomography (CT) is the main imaging modality for thoracic conditions due to its 

high tissue-air contrast. CT has been proven to be effective in the quantification of 

emphysema [2]. However, direct measurements of the dimensions of small airways using CT 

scanning is beyond current imaging resolution [3]. One option to indirectly assess the effects 

of smaller airways is to quantify gas trapping by measuring the percent of voxels in the lung 

lower than −856 Hounsfield Units (HU) on an expiratory CT scan [4]. A technique named 

Parametric Response Mapping (PRM) has been proposed to distinguish gas trapping due to 

small airway disease from low attenuation areas due to emphysema [5]. The technique 

employs both inspiratory and expiratory CT scans. After the co-registration of both images 

and the application of established CT density thresholds, one can distinguish between 

functional small airway disease (FSAD) and emphysema.

The COPD imaging community has extensively used PRM since its introduction. However, 

despite its success, the PRM technique shows some limitations that are precluding the 

interpretation of its results. The density value used to assess gas trapping highly depends on 

acquisition parameters, such as dose and reconstruction kernel, and changes in body size, 

that introduce inhomogeneous photon absorption patterns. In particular, many studies using 

PRM employ inspiratory and expiratory images that are obtained at different dose levels and 

introduce a spatially variant noise and bias across the image [6]. These effects are nuisance 

factors that affect the inter-scanner and inter-subject variability in CT density and confounds 

CT-derived metrics by PRM. As an example, Fig. 1 shows the expiratory and inspiratory 

scans of the same subject and the local standard deviation in each image. Note that the noise 

changes across the image and that the expiratory scan shows a higher variance of noise due 

to the lower dose applied.

Researchers are aware of the importance of these nuisance factors and much effort has been 

done in reducing the spatially variant noise for both iterative and back projection 

reconstruction techniques [7, 8]. Spatial discrepancies in the attenuation levels have been 

largely observed in clinical studies, especially for air [9]. Some approaches using anatomical 

references like trachea and aorta densities have been proposed with promising results [9–11]. 

The inter-scanner deviations due to calibration are also an important factor that has been 

studied in [12].

A recent PRM study has successfully associated functional respiratory decline with FSAD in 

the mild-moderate stage of COPD [13]. Surprisingly, the emphysema in this early stage has 

no effect. The detection of FSAD has been useful in the early detection of rapid lung 

function decline. However, if the mentioned nuisance factors that affect the interpretation of 

PRM are precluding the distinction between FSAD and emphysema, we could be losing 

valuable information about the emphysema and FSAD interplay that can help identify 

trajectories of rapid decline.

In this work, we propose a harmonization methodology that simultaneously minimizes the 

spatially variant noise and biases. We employ the harmonization in both inspiratory and 
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expiratory scans for the PRM analysis. Results show that our technique is able to detect the 

impact of both emphysema and airway disease in contrast to other reference methods used to 

palliate the effect of noise. Correlation analyses with lung function show a better fit with the 

harmonized data that cannot be achieved with other conventional noise reduction 

methodologies. This result evidences the importance of scan harmonization for clinical data 

and shows that the role of emphysema is still significant in early disease and can be 

distinguished from FSAD.

2 Harmonization of CT Scans

The harmonization of CT scans will be performed in three steps. First, we estimate the 

spatially variant noise power and signal. Second, we remove the spatially variant bias 

induced by the noise, and finally the density levels are re-calibrated to the nominal values of 

apparent anatomical structures.

Characterization of Tissues.

The estimation of both the signal and noise components of the CT image is performed by 

adopting the statistical characterization of signal/noise in CT scans proposed in [8]. We 

adopted this model because it offers a versatile methodology to describe the spatially variant 

noise in CT scans reconstructed with both backprojected and iterative methods without the 

need of sonograms or any interaction with the reconstruction method.

This model consists in a non-central Gamma distribution (nc-Γ) for each voxel X(r) of the 

image:

fX x α, β, δ = x − δ α − 1

βαΓ α
e− x − δ

β , x ≥ δ and α, β > 0 (1)

where α, β are the spatially variant shape, scale parameters; and δ is location parameter 

usually set to the minimum value of the CT scan (usually − 1024 HU).

The heterogeneous nature of lung parenchyma is effectively described by means of a 

mixture model of nc-Γ distributions:

p x r = ∑
j = 1

J
πj r fX x r αj r , βj r , δ (2)

for J components, where πj are the weights of the mixture and αj, βj the parameters of each 

component. To ensure that the heterogeneous composition of the lung is properly described 

in the mixture model, we set J = 9 components from −1000 to 400 HU. This is a reasonable 

range of attenuations considering that the normal lung attenuation is between −600 and −700 

HU, and also allows us to model other tissues within the CT image such as vasculature, 

muscle, fat or bone.

The estimation of the parameters for each component is achieved through the Expectation-

Maximization method for known mean values for each component, μj j = 1
J , which reduces 
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the problem to solve a non-linear equation in each iteration at each location. The estimation 

of the shape parameters for each component, αj, are obtained for each location r by solving 

the following non-linear equation derived from the maximum likelihood estimation in the 

local neighborhood η(r) (see [8] for more details):

log αj r − ψ αj r =
∑s ∈ η r γj s xi s − δ

μj
∑s ∈ η r γj s −

∑s ∈ η r
N γj s log xi s − δ

μj
∑s ∈ η r γj s − 1 (3)

with ψ ⋅ = Γ ′ x /Γ x  being the digamma function, and γj(r)= P (j x(r)) are the posterior 

probabilities for the j-th tissue class at location r:

γj r = πj r fX x r αj r , βj r , δ
∑k = 1

J πk r fX x r αk r , βk r , δ
. (4)

Then, the scale factor is calculated as βj = µj/αj and the priors πj are updated as 

πj = 1
N ∑i = 1

N γi, j.

Equations (3 and 4) are iteratively applied until convergence is reached. This convergence is 

usually achieved in very few iterations due to the constraint imposed by the mean μj j = 1
J

for each tissue. A suitable initialization of parameters for the iterative optimization is πj = 

1/J, αj = 2 and βj = µj/αj for each component.

Estimation of the Signal and Local Variance of Noise.

The characterization of tissues allows us to calculate the sample conditioned moments to 

each tissue class as follows:

Xk r j = ∑s ∈ η r x(s)kγj(s)
∑s ∈ η r γj(s) . (5)

This formulation provides a more robust estimate of conditioned local moments since it just 

considers the samples belonging to the j-th tissue class.

Finally, the moments for each location can be calculated as the weighted average of the 

conditioned moments as:

E X r k = ∑
j = 1

J
πj r E X r k j ≈ ∑

j = 1

J
πj r X r k j . (6)

Correction of Spatially Variant Bias.

The estimation of the local mean E X(r) and local variance of noise 

σ2 r = E X2 r − E X r 2 allow us to remove any bias derived from the noise. This bias 
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has been previously reported in the literature [9–11]. As an example of this effect, in Fig. 2a 

we show the linear dependence between local mean and local variance.

This dependence is corrected by estimating the linear coefficient of the ordinary least 

squares (OLS) linear regression, β, in the trachea. This coefficient decreases as the tissue 

becomes denser as a consequence of the more symmetric distribution of tissues with higher 

attenuation value than the lung (blood, fat, bone).

One of the advantages of adopting the noise model of Eq. 2 is that there is a functional 

relationship between the linear coefficient and the CT number: β(µ)= K/(µ − δ), where µ is 

the attenuation coefficient and K is a constant to be determined [11]. In this work, we take 

advantage of the linear regression in the trachea to determine K. This way, the linear 

coefficient becomes:

β μ = βtrachea
μtrachea − δ

μ − δ if μ > μtrachea

βtrachea if μ ≤ μtrachea
(7)

where µtrachea is the mean value of samples in the trachea. Now, the spatially variant bias can 

be removed as follows:

X r = E X r − β E X r σ2 r (8)

It is important to note that a systematic bias still can be present in the image since Eq. (8) 

removes the linear relationship with the local variance, but not the intercept. We remove the 

intercept by adjusting the mean values to the nominal densities of tissues in anatomical 

references. The most evident structures are the descending aorta, (Ωaorta), where the blood 

attenuation level (µblood = 50 HU) is usually adopted [10]; and the trachea, (Ωtrachea), where 

the air is set to µair = −1000 HU by definition. Then, the harmonized image is obtained by 

linear interpolation for those attenuation levels:

X r = 1 − λ r μair + λ r μblood; with λ r

= X r − E X r Ωtrachea
E X r Ωaorta − E X r Ωtrachea

(9)

We show in Fig. 2b the effect of harmonization in the trachea. Note that the linear 

relationship between the variance of noise and the attenuation level is effectively removed by 

Eq. (8). Additionally, the intercept is also corrected to the nominal value for air (−1000 HU).

3 Experiments and Results

The PRM study was performed in a set of 48 inspiratory and expiratory scan pairs acquired 

in the same session from subjects with diagnosed COPD with a range of severity levels. 5 

Different devices from 2 different manufacturers were used: GE VCT-64, Siemens 

Definition Flash, Siemens Definition, Siemens Sensation-64, and Siemens Definition AS+. 

The doses for the inspiratory and expiratory scans were 200mAs and 50mAS respectively in 

all the acquisitions. Expiratory scans are typically done at a lower dose to reduce total 
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radiation exposure resulting in an increased image noise. The discrepancy in doses implies 

that different responses in the spatial noise variance and biases (as in Fig. 1).

The assessment of the harmonization technique here proposed was performed by comparing 

its performance to other reference methods that are commonly used to reduce the effects of 

noise in medical imaging. We considered the median filter and the non-local means filter as 

the reference methods for comparison. The median filter has been widely used in the CT 

imaging community for denoising purposes due to the little assumptions about the 

underlying noise model [14]. We used two median filters with 3×3×3 (Median1) and 5×5×5 

(Median2) voxels window respectively. We also chose the non-local means filter (NLM) 

since it has shown to be an effective filtering technique in multiple modalities [15]. We use 

the implementation presented in [16] because of its efficiency for 3D volumes. The main 

parameter of this approach is the noise power. To perform a fair comparison, we estimated 

the noise power for each case using the same approach that we used in the CT 

harmonization. After filtering the image with our approach and the reference methods, we 

computed the percentage of emphysema (Emph%) and FSAD (FSAD%) using the same 

PRM technique for all the methods (we applied the −950 HU and −856 HU thresholds for 

inspiratory and expiratory scans as suggested in [5]).

Comparison Between Methods.

We performed a population analysis of the difference of emphysema% and FSAD% across 

the different methods comparing means and concordance between methods. Figure 3a–b 

show the distributions of emphysema% and FSAD%, where our approach yields a mean 

score statistically higher to the other methods in pairwise comparisons using Dunn’s method 

for joint ranking (p-value < 10−4). The reference methods do not show significant 

differences among them or even with respect to the original. This discrepancy between the 

harmonized data with respect to the reference methods and the original image is due to the 

better detection of emphysema and FSAD. This can be easily confirmed by visual inspection 

in Fig. 3c–d, where the PRM analysis of a subject with an evident emphysema region is 

represented for the original and harmonized data. Note that the PRM overestimates the 

normal tissue because of the noise influence. Conversely, the harmonization mitigates the 

noise effect in regions of parenchyma and massive emphysema which, in turn, leads to a 

more accurate measure of emphysema and FSAD. This result suggests that a reduction of 

noise with the methods available in the literature does not provide a statistically significant 

difference with the original image when measuring FSAD or emphysema. To confirm this 

fact, we performed a concordance analysis using the so-called Concordance Correlation 
Coefficient (CCC) proposed by Lin [17], a widely accepted index of agreement in settings 

with different raters. This measure assumes a positive correlation between raters, is bounded 

in [0, 1], and considers low concordance for values under 0.9 [18]. In Table 1, we show the 

concordance results obtained for the emphysema (lower diagonal) and FSAD (upper 

diagonal). We highlighted values under 0.9 of concordance to enhance the methods that can 

provide further information compared to the original image. Note that all of the reference 

methods show an almost exact concordance with the original image and among them. This 

implies that all the reference methods do not provide further information compared to the 

original image. The harmonized data, however, shows a lower concordance, suggesting that 

Vegas-Sánchez-Ferrero and Estépar José Page 6

Image Anal Mov Organ Breast Thorac Images (2018). Author manuscript; available in PMC 2020 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the emphysema and FSAD description can be improved. Indeed, in the next section, we 

demonstrate that the harmonized data allows us to distinguish better the interplay between 

FSAD and emphysema that leads to a better description of functional respiratory outcomes.

Physiological Validation.

The common histological references for emphysema and small airway disease are the mean 

linear intercept and the airway counting approach [1]. However, when histological 

approaches are not available, indirect functional measures must be used. An indirect 

validation is usually performed by evaluating the ability of the measurements obtained with 

each approach to ascertain the physiological response to emphysema and small airway 

disease. Both processes imply a reduction in lung function due to airway collapse 

(emphysema) and increase airway resistance (small airway disease) that can be assessed by 

the Force Expiratory Volume in 1-second percent predicted (FEV1%). We show in Table 2 

the results of the multivariate linear models that relate Emph% and FSAD% to FEV1% for 

each method. Note that the reference methods obtain the same outcome as the one obtained 

with the original image: a significant effect of FSAD% in the FEV1%. However, note also 

that the explained variance is lower for all the reference cases. This result shows that the 

commonly used noise reduction methods do not provide a better description of FSAD and 

emphysema interplay. On the other hand, the harmonization improves the explained variance 

from 51% to 54%, showing that the harmonized data contributes to model the lung function 

better than the original image and any reference method. Further-more, with the 

harmonization, the emphysema becomes statistically significant, showing a negative 

relationship of the emphysema ratio with the lung function. This result is consistent with the 

natural progression of COPD: “the function declines as both the emphysema and FSAD 

ratios increase,” and exhibits the importance of the proposed harmonization technique in 

distinguishing FSAD and emphysema.

4 Conclusion

We have presented a harmonization technique to deal with non-stationary noise and bias in 

chest CT scans. Our approach rests on a mixture model that describes the local statistics of 

the CT signal. The model is used to stabilize the noise and generate a stationary process. 

Then, the spatially varying bias induced by noise is corrected by removing the linear 

dependence between the signal and the noise variance. Finally, the systematic bias is 

removed by adjusting with trachea and aorta reference levels. This approach was used in the 

quantification of both emphysema and small airway disease using the PRM methodology. 

This is an ideal problem to illustrate our approach as it deals with information from two 

images acquired at inspiration and expiration with different noise characteristics due to 

acquisition and lung volume differences. The assessment is performed through a population 

study of 48 subjects acquired from different scanners and manufacturers. Comparisons with 

other reference methods show that the CT harmonization provides a significant increase in 

the detection of both emphysema and airway disease when compared to the original image 

or the reference methods. This increase results in a better distinction between emphysema 

and airway disease that cannot be achieved with the PRM analysis in the original image or 

the image filtered with the reference methods, as the concordance analysis confirmed. 
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Additionally, the better distinction between emphysema and airway disease significantly 

increases the correlation with functional metrics of airway obstruction suggesting that our 

approach is better empowered to measure biomarkers that better reflect the disease 

pathophysiology.
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Fig. 1. 
Inspiratory and expiratory scans used for PRM analysis. Note that the noise variance 

remarkably increases in the expiratory scan due to the lower dose applied. Additionally, the 

noise changes across the image affecting the PRM analysis.
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Fig. 2. 
Linear regression between local mean and local variance in the trachea before and after 

calibration.
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Fig. 3. 
Left: Distribution of Emph% (a) and FSAD% (b) in the analyzed population across filtering 

methods. The proposed harmonization approach increased the ability to resolve more 

emphysema and small airway disease. Right: PRM analysis for the inspiratory scans; 

original (c) and harmonized (d).
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Table 1.

Concordance correlation coefficients for the PRM metrics: Emphysema% (lower diagonal) and FSAD% 

(upper diagonal). Low concordance (<0.9) is highlighted with bold letters. The low concordance for 

emphysema and FSAD of the harmonized image shows that the harmonized data is the only one providing 

different information about FSAD and emphysema from the one obtained in the original image.

Original NLM Median1 Median2 Harmonized

Original - 0.99 0.98 0.96 0.84

NLM 1.00 - 1.00 0.98 0.80

Median1 1.00 1.00 - 1.00 0.77

Median2 0.99 1.00 1.00 - 0.72

Harmonized 0.88 0.86 0.85 0.83 -
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Table 2.

Linear regression analysis for the FEV1% with respect to the amount of emphysema (Emph%) and small 

airway disease (FSAD%).

Original NLM Median1 Median2 Harmonized

R2 = 0.51 R2 = 0.50 R2 = 0.47 R2 = 0.45 R2 = 0.54

Beta p-value Beta p-value Beta p-value Beta p-value Beta p-value

Emph% 0.03 0.95 0.08 0.88 0.03 0.94 0.07 0.89 0.72 <0.001

FSAD% −1.93 <0.001 −1.88 <0.001 −1.73 <0.001 −1.63 <0.001 −1.19 <0.001
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