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Abstract. This paper presents a novel method for multi-modal lung im-
age registration constrained by a motion model derived from lung 4DCT.
The motion model is estimated based on the results of intra-patient im-
age registration using Principal Component Analysis. The approach with
a prior motion model is particularly important for regions where there
is not enough information to reliably drive the registration process, as
in the case of hyperpolarized Xenon MRI and proton density MRI to
CT registration. Simultaneously, the method addresses local variations
between images in the supervoxel-based motion model parameters opti-
mization step. We compare our results in terms of the plausibility of the
estimated deformations and correlation coefficient with 4DCT-based es-
timated ventilation maps using state-of-the-art multi-modal image regis-
tration methods. Our method achieves higher average correlation scores,
showing that the application of Principal Component Analysis-based mo-
tion model in the deformable registration, helps to drive the registration
for the regions of the lungs with insufficient amount of information.
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1 Introduction

Medical images acquired at different time points, or originating from different
scanners, need to be brought into spatial alignment to assess complementary
structural and/or functional information. This process is called image regis-
tration and is one of the fundamental medical image analysis procedures [23].
Deformable image registration is particularly important for lung applications
where, for example, the different breath-hold levels need to be compensated in



the acquired images. Single-modality lung registration, especially Computed To-
mography (CT)-CT registration, has been widely studied [4, 17] and dedicated
image registration methods have been proposed [28, 7, 10, 11, 25].

While CT-CT lung image registration is a non-trivial task, mainly because
of sliding motion between the surfaces of the lungs, the ribcage, and diaphragm
[22, 18], multi-modal lung image registration is even more challenging due to
more complex deformations and directly incomparable intensities between the
acquired scans. Registration between proton density Magnetic Resonance Imag-
ing (pMRI) and CT is one such example, where the difficulty stems from the
low proton density in the lungs and susceptibility to acquisition artifacts caused
by the interfaces between air and lung tissue. Such registration, however, plays
an important role in the analysis of hyperpolarized Xenon MRI (XeMRI) [2].
XeMRI, due to its non-ionizing nature, has received substantial attention in the
field for imaging ventilation, perfusion, and gas transfer in the lungs [16]. As
XeMRI does not provide structural information, its correspondences to the pa-
tient anatomy rely on pMRI, which is acquired during the same imaging session
but not within the same breath-hold. Even though patients are provided with
bags containing 1l of gas for both image acquisitions, due to different properties
of air and xenon, as well as individual breathing patterns, the images might be
acquired at different levels of lung inflation. It is not, therefore, straightforward
to directly map XeMRI to diagnostic lung CT, for instance in the case of pa-
tients undergoing radiotherapy treatment. An intermediate registration between
pMRI and CT is needed to find this mapping, as shown in Fig. 1. This regis-
tration becomes particularly challenging for a number of reasons, including the
lower spatial resolution of pMRI compared with CT, the limited information
from lung tissue in pMRI due to its low proton density, and the presence of
susceptibility artifacts. For these reasons, the registration can easily result in
under or over-estimation of deformations inside the lungs.

An alternative approach for this problem might be the application of lung
motion models [15]. For instance, a statistical motion model based on deforma-
tions estimated from 4DCT was proposed in [5]. The individual motion models
estimated for each subject from the dataset have been co-registered to an aver-
age shape and intensity model was generated from reference frames from 4DCT.
This resulted in a development of an average inter-subject model. In [13], after
estimating the deformations from 4DCT, the surface point distribution model
of the shape of the lungs was constructed. After applying Principal Component
Analysis (PCA) to reduce the dimensionality, the statistical model between the
estimated deformations and point-based shape variations was calculated. Simi-
lar approach has been presented in [29], with the diaphragm position used as a
surrogate of the motion to control the model. To create a lung motion model,
Finite Element Analysis (FEA) could be also used, such as in [9], where a patient-
specific bio-mechanical model has been proposed for lung CT registration. How-
ever, to achieve satisfying accuracy the FEA model-based method requires an
additional registration. All of the afore mentioned methods have been applied
to CT-to-CT registration problem. In the case of pMRI-to-CT registration, the



Fig. 1. To bring XeMRI into alignment with CT, we compose two transformations:
transformation T1 that compensates for a possible initial misalignment between XeMRI
and pMRI, and transformation T2 estimated based on registration between pMRI and
CT. The dedicated framework addressing this problem is the main contribution of this
work.

task may be even more challenging due to the low out-of-plane spatial resolution
of pMRI and lack of direct intensity correspondences.

In this work, we address the issue of insufficient amount of information inside
the lungs in pMRI, by proposing a personalized 4D-CT statistical motion model
for a supervoxel-based graphical image registration [11, 25]. The main contribu-
tion is a dedicated framework, which addresses the challenges of XeMRI to CT
deformable registration in the form of supervoxel-based motion model enhanced
method. The evaluation has been performed on a clinical dataset and compared
with state-of-the-art image registration methods, showing higher correlation of
XeMRI with ventilation maps estimated from 4DCT.

2 Methods

The proposed method consists of three main steps: (1) creation of a personalized
lung motion model from 4DCT, (2) lung image clustering and (3) graph-based
pMRI-to-CT registration. We introduce these steps in detail in this section. An
overview of the proposed method is presented in Fig. 2.

2.1 Personalized lung motion model from 4DCT

In our work, to create a personalized motion model we use displacements re-
sulting from 4DCT registration to a reference volume. We apply an image reg-
istration method dedicated to lung applications [25], which has the potential to
more accurately estimate abnormal lung motion. The method has shown good
performance in terms of accuracy, plausibility of the resulting deformations for
lung CT registration, and the ability to address the sliding motion problem.



Fig. 2. Diagram presenting the workflow of the proposed method. We start from reg-
istering all the 4DCT volumes for each of the patients to the chosen reference frame.
Over the estimated deformation fields we apply PCA decomposition to create a mo-
tion model. Subsequently, we extract supervoxels from the lungs in the reference CT
volume. We create a graph, where every supervoxel is represented by a node an all
adjacent supervoxels are connected by an edge. For every supervoxel we find the best
set of motion model parameters to bring pMRI into alignment with CT using graph
cuts optimization. We apply the estimated deformation field to XeMRI as the ultimate
goal of the registration framework.

Subsequently, we perform PCA to the estimated deformations to obtain major
motion patterns for each patient.

In the proposed method, for each patient, all breathing phases from 4DCT are
co-registered to a reference volume, which is chosen as the peak inhale breathing
phase volume. Our 4DCT data consists of 10 volumes; therefore as a result of the
alignment we acquired 9 displacement fields. After the registration, we create for
the reference volume vectors comprising all the estimated deformation fields:

Rp(x) = [V p
1 (x), V p

2 (x), ..., V p
n (x)], (1)

where p is the direction the deformations (anterior-posterior, left-to-right, up-
to-down), n is the number of volumes co-registered to the reference volume, and
x is a voxel location.

After applying PCA, we can reformulate Eq. 1 in terms of eigenvalues and
eigenvectors:

Rp(x) ' µp
d +

n∑
i=1

λpi ν
p
i (x), (2)

where µp
d is the mean displacement, νpi (x) is i-th eigenvector and λpi is corre-

sponding eigenvalue for direction p (anterior-posterior, left-to-right, up-to-down)
for voxel’s spatial location x. We restricted the motion model to use the first
eigenvector, as it covers the main motion pattern observed during the registra-
tion (in anterior-posterior - 83%, left-to-right - 82% and up-to-down - 95% direc-
tions on average for our dataset). The restriction to the use of first eigenvector
makes the optimization more efficient, while taking advantage of the personalized
motion model application. Regional variations from the motion pattern are com-
pensated by applying supervoxel-based motion model parameters optimization
registration step.



2.2 Lung clustering

Image clustering provides a compact image representation, which has the poten-
tial to represent anatomically consistent regions in the form of larger structures.
The peak inhale breathing phase volume, which has been chosen as a reference
frame, is clustered using the well-established Simple Linear Iterative Clustering
method [1], which groups spatially and visually close voxels into supervoxels. In
this method, a fixed number of seeds for the expected number of supervoxels
is uniformly located in the image. Their initial position is corrected by moving
the seeds to a position of the lowest gradient in a 3× 3× 3 neighborhood. This
step is performed to avoid placing them on an edge or a noisy voxel. Following
that, every voxel in the image is assigned to the closest supervoxel, based on the

distance measure: D =

√
(de)2 + (dI/S)

2
m2, where de is the Euclidean distance

of a particular voxel to the supervoxel center, dI is a voxel’s intensity distance
from the supervoxel average intensity, and m is a compactness parameter. The
resultant clustering of a CT image is shown in Fig. 3.

Fig. 3. The reference CT image in the coronal view and superpixels estimated for the
lungs imposed on the image are shown in the upper row. Below, the estimated motion
model for the reference CT volume frame left-to-right, anterior-posterior and up-to-
down directions shown in coronal view with propagated superpixels from the CT image.
For illustrative purposes, we show superpixels extracted from a 2D image, whereas in
our method we use supervoxels extracted from 3D volumes.



2.3 Graph-based lung image registration

Image registration, as a problem of finding the optimal transformation between
two images, can be stated using an Markov Random Fields-based optimization
and posed on a graph. Graphical methods for deformable image registration
[6, 10, 11, 19, 25] have achieved state-of-the-art accuracy and good performance
in addressing sliding motion. Therefore, following image clustering, we create
a graph where every supervoxel is represented by a node and all nodes corre-
sponding to adjacent supervoxels are connected by an edge. The edge values are
uniformly set to 1.

We apply a similar approach to [25], with graph cuts [3] as an optimization
scheme. In the proposed method, we create a predefined set of labels l ∈ L,
where every label l is a set of parameters of the motion model in form of a
vector [lxlylz]. This is one of the main differences compared with the majority
of other methods in the field, where labels usually directly represent displace-
ments. The label is applied to the corresponding patch of the motion model, and
therefore, even if the algorithm assigns the same labels to neighboring supervox-
els, they may potentially still have different displacements. The displacement
inside the patch is not uniform and should mimic the motion of its tissue. Such
an approach restricts the possible displacements of the patches to those which
have been estimated for the particular regions of the lungs, and therefore re-
sults in more anatomically plausible estimated displacements. At the same time,
the method still allows for local adjustments to the model by the estimated pa-
rameters. The estimation of the motion model parameters in a form of lx, ly
and lz is one advantage of our application, as it compensates for the residual
differences, when ideal rigid alignment of pMRI and CT is difficult to achieve.
This alignment is challenging mainly because of the multi-modal nature of the
images, differences in position inside the scanner, as well as possible variations
in the patient anatomy, for instance due to tumor appearance. The model was
created from 4DCT, based on co-registration of images acquired with the patient
remaining at the same position in a scanner. Therefore our approach gives more
degrees of freedom than a classic model based-approaches to compensate for the
misalignments, while at the same time taking the advantage of the main motion
patterns represented by the motion model.

As a similarity measure to find the optimal parameters of the motion model
for every supervoxel we have applied the local correlation coefficient (LCC) [12],
which is a well established approach for measuring image similarity in medical
image registration. The general formulation of the energy to be minimized during
the optimization process is:

E(l) =
∑
p

LCC(Ifix(xp), Imov(xp + lp ∗R(xp))︸ ︷︷ ︸
data term

+α
∑

p,q∈N

‖lp − lq‖2︸ ︷︷ ︸
smoothness term

, (3)

where the data term is formulated as a mean error calculated for all voxels x in
the fixed image Ifix and moving image Imov clustered in a certain supervoxel



represented by a node p, for the applied motion model R with the parameters
represented by a label lp. The piecewise smoothness term represents quadratic
distance between the labels. The influence of the piecewise smoothness term on
the energy is controlled by a weighting parameter α. Since no XeMRI ventilation
signal is expected to be present outside of the lung, our registration framework
is therefore restricted to estimating deformations inside the volume of the lungs.
The lungs are segmented from CT and registration is done only inside the masks.
Akin to [11], we use a single resolution level with multiple layers of supervoxels,
slightly varying their size and initial location. The estimated deformations are
averaged across all layers.

The displacements estimated for the pMRI-to-CT registration are propagated
to XeMRI, just as shown in Fig 1, resulting in their alignment. Visual assessment
of the framework are presented in Fig 4, where we also display the estimated
displacement fields for all the methods.

3 Experiments and Results

Our experiments have been performed on a dataset of three patients undergoing
radiotherapy at Churchill Hospital in Oxford. For each patient, imaging data
consisting of 4DCT, pMRI and XeMRI have been acquired, with rhe resolution
of 0.98x0.98x2.5 [mm3]. Each 4DCT consisted of 10 3D volumes of CTs acquired
in axial plane. A mixture of 129Xe gas (80%) and air was polarized on-site to
between 4% and 12%, by using a commercial polarizer operating on the ru-
bidium vapor spin-exchange optical pumping basis. The hyperpolarized gas has
been delivered to patients during the imaging in 1.0-L bags [14]. The pMRI and
XeMRI have been performed at 1.5 T MR scanner as 3D volumes from coronal
acquisition the resolution of 1.56x20x1.56 [mm3].

Following [26], pMRI volumes and reference volume from 4DCT were care-
fully aligned initially using rigid registration with mutual information as a simi-
larity measure. In our application it is important to achieve good alignments at
the apex and upper parts of the lungs. The resulting transformation was propa-
gated to the corresponding XeMRI volumes, bringing them into rigid alignment
with the reference CT volume.

We subsequently performed deformable registration of pMRI-to-CT and com-
pared results of our registration method with the results of the deeds deformable
image registration [10] and free form deformation-based registration using B-
splines [21]. The deeds method originally proposed for lung CT registration shows
good performance in multi-modal image registration application due to its im-
age descriptor-based similarity measure, while FFDs on B-splines with mutual
information as a similarity measure is one of the most established approaches
for multi-modal image registration.

For the proposed method we have extracted supervoxels consisting of approx-
imately 500 voxels each, with the compactness parameter set to 0.1, and used
20 layers of supervoxels. The range of motion model parameters lx, ly and lz is
set between -0.6 and 0.6, at the intervals of 0.1. The weighting parameter α is



Fig. 4. Coronal view of the CT scan of patient 2 is shown in a). In b) XeMRI after ap-
plying rigid registration (T1 from Fig. 1) and in c) ventilation estimated from 4DCT are
presented. The remaining figures show XeMRI ventilation images for the corresponding
to CT slices. The lung border from CT is super-imposed on the ventilation images. The
results of the XeMRI ventilation after applying deformable registration are shown only
inside of the lung mask in the middle row. The possible under-estimation of the motion
for B-splines [21] d) and deeds [10] e) are pointed by green arrows, and implausible
deformations by blue arrows. The results for the proposed method are shown in f). In
the bottom row we show displacements in up-to-down direction for the corresponding
slices for all the methods in g), h) and i).



0.2 and local cross correlation was calculated for a 7x7x7 voxels patch size. Our
method has been implemented in Matlab environment and its running time with
the chosen parameters setting is approximately 45min on a i7 laptop machine.
The running times for the deeds and B-splines were approximately 13min and
25min, respectively, with C++ implementation. Our method is capable of fur-
ther optimization and parallelization, which should result in significant running
time reduction.

Visual inspection from Fig. 4 of the results reveals that the displacements es-
timated by the proposed method are anatomically more consistent. We decided
to compare the XeMRI ventilation images with ventilation maps estimated from
4DCT, which is obtained using image registration of the dynamic sequence to
a reference CT volume. To estimate ventilation maps, we have used a method
based on the changes of the lung intensity expressed in Hounsfield units between
peak inhale and peak exhale breathing phases [27]. An alternative approaches
could estimate the ventilation from 4D CT based on determinant of Jacobian [8,
20] or with the use of supervoxel tracking [24]. We calculate Spearman’s corre-
lation coefficient of the registered XeMRI ventilation images with the estimated
4DCT-based ventilation maps. Our method resulted in higher correlation coef-
ficient for patient 1 and patient 2 (0.344 and 0.572) compared to both other
image registration methods (0.217 and 0.367 for B-splines and 0.299 and 0.5 for
deeds). For patient 3 all methods achieved comparable results, with a slightly
higher value for B-splines (0.171). On average our method achieved the best score
of 0.359, with deeds being the second highest-scoring method (0.322), while the
lowest correlation was calculated for B-splines (0.251). Standard deviation of the
determinant of the Jacobian of deformations, which can be seen as a measure
of complexity of the deformations, for our method was on average 0.35, com-
pared with 1.15 for B-splines and 0.63 for deeds. The results of the calculated
correlations are shown in Fig. 5.

4 Discussion and Conclusions

In this work, we proposed a personalized model-driven method for pMRI-to-CT
lung image registration. The method was evaluated on three datasets of patients
undergoing radiation treatment for lung cancer. The visual results presented in
Fig. 4, where we show the estimated deformations, might suggest that the pro-
posed method better mimic the motion of the lungs. The sudden changes in the
direction of the motion estimated by B-splines and deeds, especially for the left
lung, are unlikely to be present during breathing. We calculated correlation be-
tween CT-based estimated ventilations and XeMRI brought into alignment with
CT by our method. On average, our method outperformed other image regis-
tration approaches in terms of the correlation with ventilation maps estimated
from 4DCT. The slightly lower score for patient 3 was possibly caused by the
fact that the difference in the lung volume between pMRI/XeMRI and CT was
the lowest in this case. This observation seems to be supported by the fact that
all the methods achieved comparable results.



Fig. 5. Spearman’s correlation between CT-based estimated ventilation maps and
XeMRI ventilation images for different pMRI-to-CT registration approaches.

Our motion model-based method requires an accurate initial rigid registra-
tion. The upper parts of the lungs and apexes should be well aligned initially,
or else the motion model-based registration might result in suboptimal perfor-
mance. Such behavior is imposed by the lung physiology and should not be
considered as a limitation of the method.

One of the challenges in our work is the lack of ground truth or landmarks
set in both modality images. Low out-of-plane resolution of pMRI and XeMRI
(20mm) is another factor and, hence, the registration problem is not a trivial one
to address. The correlation of XeMRI with 4DCT-based estimated ventilation
maps resulted in the overall moderate correlation. The reason for that might
be different breathing patterns in 4DCT compared to XeMRI/pMRI, related to
physical properties of xenon gas, which is much heavier than air. Ventilation
maps based on 4DCT are estimated based on the changes of the tissue density,
which should correspond to the lungs filling with air, however in practice they
might provide complementary information. Another limitation is that we had
access to only one 4DCT scan of each patient. Therefore our method might
be prone to intra breathing cycle variations. This issue could potentially be
eliminated by including more scans, such as diagnostic CT, of the same patient
in the breathing motion creation step.

The presented method shows promising results for the challenging applica-
tion of XeMRI to CT registration. The application of the Principal Component
Analysis-based motion model in the deformable registration step of the frame-
work, seems to have the potential to help drive the registration for the regions
of the lungs with insufficient amount of information.
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lenges in deformable image registration: From image fusion to complex motion
modelling. Med. Image Anal. 33(10), 145–148 (2016)
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