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Abstract

A-scan acquisitions in OCT images are acquired in a fan-beam pattern, but saved and displayed in 

a rectangular space. This results in an inaccurate representation of the scan geometry of OCT 

images, which introduces systematic distortions that can greatly impact shape and morphology 

based analysis of the retina. Correction of OCT scan geometry has proven to be a challenging task 

due to a lack of information regarding the true angle of entry of each A-scan through the pupil and 

the location of the A-scan nodal points. In this work, we present a preliminary model that solves 

for the OCT scan geometry in a restricted 2D setting. Our approach uses two repeat scans with 

corresponding landmarks to estimate the necessary parameters to correctly restore the fan-beam 

geometry of the input B-scans. Our results show accurate estimation of the ground truth geometry 

from simulated B-scans, and we found qualitatively promising result when the correction was 

applied to longitudinal B-scans of the same subject. We establish a robust 2D framework that can 

potentially be expanded for full 3D estimation and correction of OCT scan geometries.
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1 Introduction

Optical coherence tomography (OCT) imaging has gained widespread popularity in the past 

decade for the analysis of retinal health and disease in both clinical and research settings. 

However, a longstanding limitation of OCT imaging is the absence of scan geometry 

correction to accurately match the image with its physical acquisition space [1–3]. A-scan 

acquisitions in OCT images are acquired in a fan-beam pattern, however they are saved and 

visualized in a rectangular pattern. This distorts the resulting image in two ways. First, due 

to the spread of the fan-beam, the arc distance between A-scans increases with the depth in 

the scan. When represented as a rectangular pattern, this results in structures deeper in the 

image to appear compressed. Second, the A-scans on the edges of a fan-beam must travel 

further than the A-scans at the center of the scan. This causes objects in the periphery of the 

OCT image to be located deeper in the A-scan. When placed in a rectangular pattern, this 

results in the appearance that objects are curved downwards when moving away from the 

center of the scan. Figure 1 shows two examples of distortions due to uncorrected scan 

geometry on a flat object.
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Due to the presence of scan geometry distortions, OCT images do not fully represent the 

correct underlying physical structure of the retina [1]. However, it is interesting to note that 

errors from this misrepresentation are largely mitigated in contemporary analysis of OCT 

which focuses on observing regional means of retinal layer thickness. This is because the 

thickness of a layer is typically measured as the direct distance within each A-scan in the 

OCT [4]. Neither the depth dependent compression of the fan-beam nor the shift of the A-

scans in the periphery influences this thickness measure. The main effect that scan geometry 

has on thickness values is in the non-uniform path each A-scan takes across a layer, resulting 

in thicker measurements away from the fovea. However this effect is often masked by the 

natural concentric increase of layer thickness with distance from the fovea, and the use of 

mean layer thickness for most analysis.

In recent years, addressing the scan geometry of OCT has becomes more important due to 

the emerging popularity of spatially-based analysis of the shape [5, 6] and morphology [7–9] 

of the retina. In contrast to thickness-based analysis, these methods are highly sensitive to 

structural distortions due to the local specificity of the techniques. However, correcting for 

the scan geometry of OCT has remained a challenge due to two missing pieces of 

information that are generally not provided with OCT images: 1) the angle of entry of each 

A-scan into the pupil and 2) the location of the A-scan nodal point, where the fan-beam is 

centered. Existing approaches for correcting the scan geometry rely on basic approximations 

regarding these parameters, such as assuming the beam entry is always centered or 

approximating the nodal point location using the subject’s axial length [1].

In this work we present a 2D model for B-scan OCT acquisitions, which we use to generate 

simulated images with specific scan geometry distortion. We then present an analytic 

approach for solving the missing parameters of the model using trigonometric relationships 

established between corresponding landmarks from two different scans.

2 Method

2.1 OCT Fan-beam Geometry

We represent the fan-beam geometry of the OCT image as a polar coordinate system where 

the origin, C, is the nodal point where the A-scans intersect, and (cx, cy) is the location of C 
in the Cartesian (physical) coordinate system. ϕn is polar coordinate angle of the nth A-scan 

in the OCT image. R is the distance from the nodal point to the top of the OCT scan, and rn 

is the A-scan measurement from the top of the OCT scan to the surface of the retina. Figure 

2 shows a diagram of this model. For a physical location (xn, yn) on the surface of the retina, 

we can describe it in terms of the image coordinate system using standard conversion 

between polar and Cartesian coordinates:

xn = R + rn cos ϕn + cx (1)

yn = R + rn sin ϕn + cy . (2)
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2.2 Two Scan Solution

Given the geometry described in Section 2.1, we introduce an approach for solving for the 

length of R and relative location of C when given two scans (with nodal points CA and CB) 

with corresponding landmarks (x1, y1) and (x2,y2). Figure 3 shows the geometric setup for 

the problem. We see from the diagram that the nodal points and corresponding landmarks 

form two triangles with a shared side L. r1
A, r2

A, r1
B, r2

B are the distance from each A-scan in 

images A and B to (x1, y1) and (x2, y2), respectively. α1, 2
A  and α1, 2

B  are the angles between 

the two A-scans associated with the landmarks in each image. These angles can be found as 

a fraction of the total angular field of view of each scan. Using the law of cosines on both 

triangles, we can establish the equivalency:

L2 = R + r1
A 2 + R + r2

A 2 − 2 R + r1
A R + r2

A cos α1, 2
A (3)

L2 = R + r1
B 2 + R + r2

B 2 − 2 R + r1
B R + r2

B cos α1, 2
B . (4)

This allows us to solve for R as a quadratic equation:

R =
−b ± b2 − 4ac

2a (5)

where,

a = 2 cos α1, 2
A − cos α1, 2

B (6)

b = 2 r1
Br2

B 1 − cos α1, 2
B − r1

Ar2
A 1 − cos α1, 2

A (7)

c = r1
B 2 + r2

B 2 − r1
A 2 + r2

A 2 − 2 r1
Br2

Bcos α1, 2
B − r1

Ar2
Acos α1, 2

A . (8)

Taking the positive solution for R, we can then use Eq.1 and 2 to place each A-scan from 

each image into the physical coordinate space. This is done by first setting the nodal point as 

the origin (cx, cy) = (0,0) and placing the first A-scan at zero degrees (ϕ1 = 0). This allows 

both images to be converted from their polar coordinate systems into Cartesian coordinate 

systems. Once in Cartesian space, we can then apply a rigid body rotation and translation 
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such that the thinnest line that crosses the fovea center is aligned with the visual axis of the 

eye (see Figure 5b).

3 Evaluation and Results

3.1 Simulated Reconstruction

One challenge in modeling and correcting for the scan geometry in retinal OCT is the lack 

of a ground truth representation for the retina being imaged. Thus, it is difficult to assess if 

the scan geometry was accurately corrected. To evaluate our approach, we use our model to 

generate simulated OCT images from specific scan geometries (see Figure 1a). Each voxel 

of the object in the simulation is tagged with a unique identifier, which can be observed as 

the gradient in Figure 1a. Using these identifier, this allows us to establish voxel-wise 

correspondences between two simulated OCT images.

Our correction method was applied to these simulated OCT images using two randomly 

chosen locations in the images as landmarks to estimate R. This process was repeated 10000 

times to acquire a distribution of the R estimated from the simulated OCT images. Figure 4 

shows a histogram of the estimated R from the 10000 trials. From the figure we see that 

majority of the estimated R were clustered around the true distance of R = 500 pixels. There 

were however several degenerate estimations of zero and infinity for R which resulted when 

the two randomly chosen landmarks were too close together or co-linear, causing the 

equation to have zero or infinite solutions. Ignoring these degenerate cases, the RMSE of the 

estimated R compared to the ground truth in this experiment was 84.9 pixels, which is a 

mean spread of 16.98% relative to the ground truth R length being estimated.

3.2 Application to Real Data

We also applied our approach for correcting the scan geometry of real OCT data. A 

corresponding pair of B-scans from longitudinal OCT scans of the same subject was 

manually selected. A pair of vessel locations in each B-scan was then selected and used as 

corresponding landmarks, and our approach was applied to the images to correct for the scan 

geometry in both images simultaneously. Both corrected images were then realigned such 

that the fovea is centered. Figure 5 shows the original and corrected images. Since the true 

distortion and the shape of the underlying retina is unknown, this primarily served as a 

preliminary demonstration of our technique on real data. Qualitatively, we observe that the 

shape and structure of the retina became better aligned after correcting for the scan 

geometry. However, unlike an image registration technique where one image is used as a 

reference and the other image is transformed to match, our approach solves and correct for 

the underlying shared geometry of the retina in both images. Thus, our approach increased 

the similarity between the images without being biased towards a chosen reference.

4 Discussion

4.1 Simulation Errors

From Figure 4 we see that even for a simulated reconstruction of the scan geometry, there is 

still a distribution of error when estimating R. The primary source of this error comes from 
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the discretization of the object as it is converted into the simulated B-scans. Since the 

corresponding landmarks are establish as pairwise voxels, the precise location of a 

corresponding feature can be lost due to the voxel resolution. This error then translates to 

inaccuracies in the reconstruction of the scan geometry.

4.2 Limitations

We observe two primary limitations to our proposed approach. First, the 2D model currently 

limits the practicality of the method for use with real 3D OCT images. While in Section 3.2 

we were able to find two corresponding B-scans to apply our method, often corresponding 

landmark locations between OCT images will not necessary land on the same B-scan. To 

address this, we are currently working to extend the model to a 3D solution, which will 

account for the scan geometry along both the A-scan and B-scan directions. Second, we 

recognize that a repeat scan of the same subject may not always be available to be used with 

our approach. Thus we are looking into adaptations of this method that will be able to use 

different types of regularly acquired scans (e.g. horizontal and vertical scans) to reduce this 

limitation.

5 Conclusion

In this work we introduced a 2D model for correcting the fan-beam geometry of OCT B-

scans. From the model, we derived an analytic solution for solving the unknown location 

and distance of the nodal point from a pair of B-scans, which showed promising results in 

simulated and real data. Our goal is to establish a robust 2D framework that will be 

expanded in the future for full 3D estimation and correction of OCT scan geometries. This 

correction will allow for more accurate analysis of retinal shape and morphology for the 

study of retinal health and disease.
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Fig. 1. 
Tw o examples of simulated OCT scans and the effect of the scan geometry distortion on a 

flat object. (a) shows the relative positioning between the fan-beam and the object. Blue 

represents the scan area acquired in the OCT image, and green is the non-acquired region 

between the nodal point and OCT image. (b) shows the resulting OCT B-scan of the object, 

where each column in the image corresponds with a blue A-scan line in the respective image 

in (a).
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Fig. 2. 
Diagram of the OCT fan-beam geometry in our model. C is the location of the nodal point, 

R is a constant distance from C to the beginning of the OCT scan. For the nth A-scan, rn is 

the distance from the retina to the beginning of the scan and ϕn is the polar angle of the A-

scan.
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Fig. 3. 
Diagram of our approach for using two scans to solve for the nodal points CA and CB and, 

R, the constant distance from each OCT scan to its nodal point.
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Fig. 4. 
Histogram of the estimated R across 10000 random trials using simulated OCT images with 

a ground truth R = 500.
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Fig. 5. 
Example of the proposed scan correction on a pair of longitudinal B-scans from the same 

subject. Yellow arrows indicate the two pairs of vessel locations used as corresponding 

landmarks for our method. (a) shows the two original B-scan images. (b) shows the resulting 

images after correcting for the scan geometry.
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