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Abstract—Unfair pricing policies have been shown to be one
of the most negative perceptions customers can have concerning
pricing, and may result in long-term losses for a company. Despite
the fact that dynamic pricing models help companies maximize
revenue, fairness and equality should be taken into account
in order to avoid unfair price differences between groups of
customers. This paper shows how to solve dynamic pricing by
using Reinforcement Learning (RL) techniques so that prices are
maximized while keeping a balance between revenue and fairness.
We demonstrate that RL provides two main features to support
fairness in dynamic pricing: on the one hand, RL is able to learn
from recent experience, adapting the pricing policy to complex
market environments; on the other hand, it provides a trade-
off between short and long-term objectives, hence integrating
fairness into the model’s core. Considering these two features,
we propose the application of RL for revenue optimization, with
the additional integration of fairness as part of the learning
procedure by using Jain’s index as a metric. Results in a simulated
environment show a significant improvement in fairness while at
the same time maintaining optimisation of revenue.

Keywords—Reinforcement Learning, Dynamic Pricing, Fair-
ness, Jain’s index

I. INTRODUCTION

Determining the right price of a product or service for a
particular customer is a necessary, yet complex endeavour;
it requires knowledge of the customer’s willingness to pay,
estimation of future demands, ability to adjust strategies to
competition pricing [1], etc. Dynamic pricing [2], [3] repre-
sents a promising solution for this challenge due to its intrinsic
adjustment to customer expectations. Indeed, with the advent
and establishment of digital channels, unique opportunities for
the application of dynamic pricing are arising, thus enhancing
research in the field [4], [5]. Equality is a critical aspect of
dynamic pricing as it influences customers’ perceptions of
fairness [6]–[11]. As long as perceptions of fairness are used
by people as a heuristic for trust, inequality may lead to a
destruction of that trust. For instance, large price differences
between groups of customers, or a disagreement between
the distribution of cost and profit are known to affect the
relationship between customers and sellers [12]. Should this
relationship be damaged, it could eventually generate substan-
tial financial losses for a company in the medium- and long-
term [13]. Although the definition of fairness depends on the
domain context and, consequently, has a diffuse definition [14],
we propose clear design principles for fairness in dynamic
pricing with a focus on elements such as group or individual
schemes (in which policy decisions are applied), and equity or
definitions of equality. This clear design allows us to specify
a well-defined metric and to include it in the overall model in
order to ensure fairness.

Different approaches have been proposed to address the
problem of maximizing revenue [2]. Among these is a promis-
ing technique consisting of optimizing pricing policies with
Reinforcement Learning (RL) applied to different market sce-
narios (uni or multi-agent) [15]–[18]. Despite the extensive
application of RL models to dynamic pricing, concepts such
as equality and fairness are rarely incorporated into the learned
policies. Moreover, the black–box nature of Machine Learning
models [19]–[22] means that it is of utmost importance to
ensure a good trade-off between revenue (goal for companies)
and equality (principle of fairness and a goal for customers)
[23]. There are also ethical issues in artificial intelligence
such as algorithm bias, in which if the input data (or market
environment itself) reflects unfair biases of the broader society
[24]–[27], the output model can potentially capture such biases
perpetuating unfair policies. These biases can have a significant
impact on dynamic pricing outcomes, as the efficiency of
policies (revenue) has to be balanced against the need to
achieve equality treatment of costumers [28].

Many metrics have been proposed in order to measure
fairness from the resource allocation distribution point of
view [29]. Such a perspective has been widely studied [30]–
[32] in order to avoid unfair resource allocation for nodes in
wireless networks. In the present paper we apply concepts
from resource allocation distribution to dynamic pricing so
as to interpret fairness as similarly distributed prices among
groups of customers (equality between groups of customers).
Identification of different groups of customers is required
for an effective price discrimination. In each group, certain
assumptions about price sensitivity have to be made; groups
could be defined, for instance, by customer’s income level,
gender, location, communication channel, etc. Our learning
procedure provides homogeneous prices among such groups,
but at the same time, takes into account price sensitives within
each group to maximize revenue. As we will show, maintaining
a balance of price distribution among groups of customers
will boost fairness perception and thus trust, as the price for
different offers is chosen by considering equality.

The present study is organized as follows. Section II
provides some useful definitions from the fairness design
principles, the resource allocation distribution literature, and
reviews the main concepts of RL. The experimental method-
ology is then presented in section III, where synthetic groups of
customers are introduced, and RL is applied to the dynamic
pricing problem. Next, we show our experimental results in
section IV. Finally, we draw some conclusions in section V.
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II. BACKGROUND

In this section we will start by first reviewing main concepts
of Reinforcement Learning (RL), more specifically Q-Learning
as variation of RL. We also define the approximation of Q-
values by means of Neural Networks (NN) minimizing a loss
function. Thereafter we will spell out the design principles
for fairness. Finally, we will introduce the main Jain’s index
properties, which will allow us to measure fairness in dynamic
pricing policies.

A. Reinforcement Learning concepts

Reinforcement Learning is an area of machine learning
that studies how an agent takes actions in an environment to
achieve a given goal [33]. RL differs from supervised learning
as the agent learns by trial and error while interacting with
the environment, as opposed to learning with labeled data. As
such, RL is best suited for learning within sequential decision
problems.

Q-learning is a variant of RL introduced by Watkins [34],
whereby the heuristics of the model are directly related to
the rewards provided by the environment in each iteration. Q-
Learning can be applied to dynamic pricing as each action will
modify the state of the environment (related to fairness), thus
providing a reward (the bid itself). Equation (1) represents the
generic way in which Q-learning is expressed:

Q(s, a)← (1− α)Q(s, a) + α
(
r′ + γ arg max

a∗
Q(s′, a∗)

∣∣∣s, a).
(1)

Here, α is the learning rate, γ the discount factor and r′ is
the reward obtained after performing action a in state s. Thus,
the goal of RL is to find a policy π∗ : s→ a that maximizes
the expected discounted utility with some exploration methods.
We use ε-greedy strategy that follows a random action with ε
probability and action with 1− ε probability.

Q-Learning in its simplest form uses a table (Q-table)
to represent state-action values, i.e. Q-Values. The problem,
however, becomes intractable as the number of states and
actions increases [15], [35]. In general terms, the Q-value
function in equation (1) can be estimated by function ap-
proximation, i.e. Q(s, a) ≈ Q(s, a; θ) [36]. Since NN act
as universal function approximators [37], they provide an
excellent framework for Q-value estimation. Indeed, recent
advances in NN applied to Q-learning have shown them to
greatly outperform traditional RL methods [35], [38]–[40]. The
process of learning Q-value estimations is as follows: at each
iteration step i, approximated Q-values Q(s, a; θi) are trained
by Stochastic Gradient Descent, by minimizing the loss L(θi):

L(θi) =

[(
y −Q(s, a; θi)

)2]
, (2)

where y =

[
r′ + γarg max

a∗
Q(s′, a∗; θi−1)

∣∣∣s, a].

Reinforcement learning algorithms constitute a suitable
method for learning pricing policies, whenever the expected
revenue for taking a pricing action is unknown in the absence
of complete information of the environment [41].

B. Fairness Design Principles

We say that a policy in dynamic pricing is fair when the
policy provides similarly distributed prices among groups of
customers. From this definition, we can establish the next
principles: A) equality, which drives homogeneous prices, and
B) groups as atomic entities for applying prices, rather than
individuals. Taken these two principles into account, we further
propose to use Jain’s Index [42] as fairness metric because: I)
it works on multiple groups, II) it provides an indicator of how
homogeneous is the policy as a clear indicator of how much the
policy is fair in percentage terms (from 0 to 100% fair). Other
metrics for measuring equality and fairness suited to be applied
to dynamic pricing, such as entropy, min-max ratio, etc. are
out of the scope of this paper. A complete and comprehensive
study on several fairness metrics and their properties can be
found in the reference list [29].

C. Metrics for Fairness: Jain’s Index

Let C be a portfolio of customers. Each customer ci belongs
to one group gα ∈ G, where G is a collection of groups
covering C. We use ḡα to represent the average price allocated
in group gα.

The Jain’s index is defined as

J =

(∑
g∈G ḡ

)2
|G|
∑
g∈G ḡ

2
.

It provides a measurement of how fair the average price
allocation is in G (here, |G| is the number of groups in G).
Jain’s index poses two convenient characteristics when used to
define the heuristics in a RL model: I) values are continuous
between [0, 1] and II) the index applies to any number of
groups. First feature I) fits perfectly with our definitions of
states in Section III-A while the second II) is valuable when
several groups of customers are defined.

0

25

50

75

100

0 25 50 75 100
g1

g 2

0.6
0.7
0.8
0.9
1.0

Fairness

Fig. 1. Jain’s index for two groups of customers. Please, notice that the index
equals here the percentage of people for which a pricing policy is fair.

As we mentioned before, Jain’s index offers an excellent
way to know how fair our price allocation is among groups
in G. For instance, if there are only two groups and either
ḡ1 � ḡ2 or ḡ2 � ḡ1, Jain’s index is 0.5, reflecting an unfair
situation. Therefore, the model should learn to increase prices
when possible in group g1 and/or decrease the prices in g2.
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This two-group case is represented in figure 1. As observed,
values on the diagonal are 1.0, because both groups have the
same average price, i.e.: ḡ1 = ḡ2. Thus, the policy is fair
with an homogeneous price between groups. However, when
ḡ1 = 50, ḡ2 = 0 or ḡ1 = 0, ḡ2 = 50 the policy is fair only with
the 50% of the groups (heterogeneous case). Thus, by means
of this metric, we can constrain the differences between groups
and provide fairer prices.

III. METHODOLOGY

We define four synthetic groups G = {g1, g2, g3, g4} to
experiment with fairness and revenue. We simulate customers
c ∈ C belonging to any group in G. Each customer responds to
each price bid with the following logistic function φ ∈ [0, 1]:

φ(a, g | a ∈ A, g ∈ G) =
[
1 + e−(b+w·a)

]−1 (3)

where a is the action chosen by the agent (the bid), and bg
and wg are parameters defining the sensitivity of each group,
see Table I.

TABLE I. WEIGHTS FOR THE LOGISTIC FUNCTION φ

Group b w
1 18.229 −2.369
2 4.4757 −1.1526
3 −1.09195 0.34000
4 0 0

This simple environment provides a scenario in which four
different behaviours are simulated. Customers belonging to g1
will accept much higher prices than customers in g2. On the
other hand, customers from g3 exhibit an inverse behaviour:
the larger the price, the higher the acceptance probability.
This group can be seen as customers whose perception of the
product quality increases with price. Finally, g4 customers are
not sensible to any change in the price. Figure 2 represents
the probability of acceptance of a given price for each group
(agent action or bid value).
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Fig. 2. Prices acceptance probabilities for the 4 groups defined in Equation
(3) and Table I.

In order to achieve both the maximum revenue and fair-
ness, the model should learn to increase the price within
each group (maximizing the revenue), while reducing the
differences between groups when possible, so that fairness is
also maximized. Please note that maximizing revenue entails

finding the maximum price for each group in which the
probability of acceptance is the highest [43].

The statistics in the experiments are computed by running
350 epochs. In each epoch 1000 bids are simulated with a 100
customers randomly selected from C. In order to achieve a
good balance between exploration and exploitation, for every
epoch t we decrease ε according to the next ratio ε = 1/e

t
20

(starting by ε = 1).

The following subsections define the main elements of RL
proposed in the present paper for a fair dynamic pricing. To
this end, we define a state that allows us to identify both the
customer group, g ∈ G, and the average allocated price, ḡ; this
way, both revenue and fairness can be maximized. As will be
shown, revenue maximization is included in the reward through
the value of each bid (see equation (5)).

A. States

We define the state as S = {sc, sf}, where sc represents
the customer group, and sf represents the global fairness. We
propose to code sc and sf as independent one-hot vectors. For
the latter, sf , we define a partition I of mesh p in the interval
[0, 1], I ≡ 0 < p < 2p < ... < 1− p < 1, so that there is a k
such that Ik ≤ sf ≤ Ik+1 ∀sf . Given this partition, we define
the one-hot encoding of sf as a vector with a 1 at position k,
and zeros otherwise. Finally, S is a vector resulting from the
concatenation of sc and sf one-hot encoding, and has the final
dimension n = |G|+ 1/p+ 1. As an example, if we define a
partition with mesh p = 1/3, one state with customer cα ∈ g2
and a global Jain’s index with value 0.89, the vector S will be
represented as follows:

Sα =

G J︷ ︸︸ ︷ ︷ ︸︸ ︷
g1 g2 g3 g4 [0, 13 ) [ 13 ,

2
3 ) [ 23 , 1]

↓ ↓ ↓ ↓ ↓ ↓ ↓
[ ]0 1 0 0 0 0 1

B. Actions

We define the action space, A, as a partition of mesh q in
the interval [min,max], i.e.

A ≡ min < min +q < min +2q < ... < max−q < max .

The action space has dimension m = 1/q + 1. Please note
that as long as A is constrained between {min,max} prices,
the model will never bid excessively unfair prices –i.e., a non-
sense price.

Extensive experimentation show that best values of p, q for
discretizing the state and action vectors lie at around 0.01. With
this selection we provide a good balance between expansion
and shrinkage over the state/action space. On the one hand, a
fine grid mesh (large p and q) make certain over–the–space
defined functions (such as customer sensitivity in equation
(3)) more expressive. On the other hand, small discretizations
negatively affect learning convergences. Thus, the selection of
parameters p and q is critical.
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C. Q-value approximation

In accordance with our definitions of state and action, we
propose a simple lineal approximation of the policy:

T0(w0, b0) :Rn → Rm

s→ a = w0 ·X + b0,
(4)

where w0 ∈ Rm×n and b0 ∈ Rm are learnable parameters.
Thus, we are approximating Q-values with a linear, one-hidden
layer network. Depending on the problem complexity, the NN
can be expanded with more layers and different activation
functions. With this compact method only two vectors (weights
and bias for every layer) are needed to represent all Q-values.

D. Reward

Reward definition in dynamic pricing modeling with RL
is generally challenging, as it represents the heuristics of the
model itself. In the present paper, a multi-objective heuristic is
required to account for both revenue and fairness optimization.
Thus, hyper-parameters are needed to balance and be estab-
lished as specific goals for each objective. For instance, one
goal might be learning a policy with a fairness value equal to
0.85 while maximizing the bidding price, or viceversa. Bearing
this in mind, we define the reward as:

r = βp exp

(
−

(p− pt)2

σp

)
+ βf exp

(
−

(f − ft)2

σf

)
. (5)

The first term in equation (5) stands for price optimization,
while the second intends to balance it with fairness. Here
βp, σp, pt and βf , σf , ft are hyper-parameters that balance and
establish a specific goal for p and f , respectively. Variable
p ∈ R[0, 1] relates to the price given in the ith bidding, with pt
the target price. Similarly, f ∈ R[0, 1] is the fairness index, and
ft the desired (target) fairness. In order to model the reward,
we have chosen a normal distribution of prices and fairness
as it exhibits two convenient properties [44]: it points in the
direction of the target price pt and target fairness ft; it also
provides a uniform decay for states distant from the main goal.
The following figure III-D shows several examples of hyper-
parameter choices. NB: The reward is scaled between [0, 1].
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Fig. 3. Gaussian reward function

In a real environment, customers will accept or reject each
bid, i.e, the bid will be the value itself or 0. Thus, we define
p as follows:

p =

{
ν(a) if B

(
φ(a, g)

)
= 0

a if B
(
φ(a, g)

)
= 1

(6)

Here, B is the binomial distribution, and the function φ(a, g |
a ∈ A, g ∈ G) is given by equation (3). The ν(a) function
represents the penalization when a bid is rejected. It could
be modeled with a zero value, a constant negative value to
penalize the rejection, or even a value proportional to the bid
itself. However, in dynamic pricing it is important to keep the
rejection rate low because the expected revenue of a policy is
calculated as the ratio between the average bid value and the
rejection ratio. Hence, it is convenient to take ν =constant.
From an industrial perspective, we use a large penalization
(ν = −0.5) in order to avoid customer rejection.

Next, we define the variable f , that accounts for fairness
optimization in equation (5). From a resource allocation point
of view, given a fixed number of groups of customers (|G|
fixed), a large and homogeneous value of the resources (ḡ
large) will increment Jain’s index, and thus fairness. However,
in the dynamic pricing context, increasing the average bid price
will certainly not be perceived as fair. Therefore, we propose to
distribute low and homogeneous prices among groups (ḡ low),
in contrast to increasing prices where possible to maximize
revenue. These ideas can be expressed mathematically as
follows:

f =

(∑
g∈G max{A} − ḡ

)2
|G|
∑
g∈G

(
max{A} − ḡ

)2 ∈ [0, 1], (7)

which can be interpreted as a rotated Jain’s index after
comparing figures II-C and 4. Nevertheless, our transforma-
tion keeps the main properties of Jain’s index invariant (i.e.
population size, scale and metric independence, boundedness
or continuity). Despite the simplicity of this approach, this
rotation effectively allows for the balance between revenue
and fairness.
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Fig. 4. Rotated Jain’s index

Finally, we should point out that the selection of reward’s
hyper-parameters in equation (5), along with the discretization
of the state/action space, must be carred out with care as it
dramatically impacts the learning process.

IEEE iv | P a g e



Intelligent Systems Conference 2018
6-7 September 2018 | London, UK

E. Reinforcement Learning with NN

The following pseudo-code defines a standard way for
training a NN to approximate Q-values. As illustrated in
algorithm 1, the agent takes each bid a to evaluate the fairness
using averages prices in G. The fairness value is calculated
with the latest information given by G. With both the bid
(p) and fairness information (f), the reward r is obtained.
Finally, a gradient descent step is executed to reduce the
loss produced between the current and the target Q-value, see
equation (2). In the experiments, we use the ADAM gradient
descend algorithm [45] with a learning rate equal to 0.01.

Algorithm 1 Q-learning with NN approximation
1: Initialize Neural Network with Random weights
2: for e = 1, E do . E total epochs
3: ∀ḡ ∈ G, ḡ = 0 . Initialize revenue distribution
4: for i = 1, I do . I total iterations

5: ai =

{
arg maxa∗ Q(si, a

∗; θi) w.p. 1− ε
Random action w.p. ε

6: bid ai on the environment . One one customer
7: Update G
8: Calculate fairness fi based on eq. (7) . On G
9: Get reward ri based on eq. (5)

10: Get state s
′

= si+1

11: yi =

{
ν if ri = 0

ri + γ arg maxa∗ Q(s
′
, a∗; θi−1) o/w

12:
(
yi −Q(s, a; θi)

)2
. Gradient descent step

IV. RESULTS AND DISCUSSION

The evaluation of the agent’s learning procedure is chal-
lenging, as the binomial distribution in equation (6) introduces
statistical fluctuations that lead to changes in the states/actions
distribution. In order to alleviate these instabilities, we use
the average cumulative bid (Fp) and average fairness (f ).
Although the bid p can take negative values in equation (6), we
constrain p ∈ [0,+∞) for a better representation of the actual
revenue. Regarding the reward r in equation (5), we scale the
cumulative reward for each experiment between [0, 1]. This
normalization is applied for a better comparison, because in
each experiment different weights are used (β).

We conduct a number of experiments in order to understand
the effect of the different competing objectives in equation (5)
(i.e., revenue and fairness). Experiments I and II are designed
to test both objectives separately (revenue and fairness). Ex-
periments III and IV to find a policy with a desired target
fairness. Experiment V is proposed as a null model which has
no learning mechanism, thus all actions are randomly selected
(ε = 1.0) with zero reward value. The following table provides
the main results by comparing the average cumulative bid, the
averaged fairness, the reject ratio and the expected cumulative
revenue for the previous defined experiments. The expected
revenue r is calculated as result of the product between Fp
and rejects.

For every experiment, table III shows the average bid
allocated in each group. This table provides valuable informa-
tion related to the fairness achieved for each policy. Related

1ε = 1.0 .In null model all actions are randomly selected.

TABLE II. RESULTS FOR THE PROPOSED EXPERIMENTS

Exp. Hyperparameters Results

βp βf pt ft Fp f Rejects r

I 1 0 1 - 2761.3 0.62 0.10 2485.17
II 0 1 - 1 1326.2 0.99 0.25 994.65

III 1 1 1 0.90 2282.1 0.88 0.11 2031.21
IV 1 1 1 0.75 2527.4 0.76 0.11 2249.36

V 1 0 0 - - 1708.9 0.97 0.31 1179.12

to the fairness principles design defined in section II-B, we
can observe that the more target fairness given by ft the
more homogeneous prices among groups are. Thus, the policy
incorporate the proposed fairness principles definition.

TABLE III. AVERAGE BID ON SEGMENTS gα ∈ G

Exp. g1 g2 g3 g4

I 5.8 2.0 9.5 9.8

II 2.7 2.9 2.6 2.7

III 5.6 2.0 6.6 6.8

IV 5.5 2.1 8.5 6.6

V 5.4 5.5 5.4 5.5
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Fig. 5. Averaged cumulative bid. In exp. I the model learns to maximize
revenue in contrast to exp. II in which learns to be fair. Exp. III and IV
are proposed to learn a model balancing revenue and fairness with a specific
targets. In the exp. V all actions are taken randomly
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Fig. 6. Averaged fairness (see description of experiments in figure 5)

Figures 5, 6 and 7 show the evolution of the average cumu-
lative bid, fairness and reward, respectively. In experiment I
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Fig. 7. Average reward

the agent learns a policy that minimizes fairness average and
maximizes bid average in contrast to experiment II in which
fairness is maximized obtaining the minimum bid average.
Note that the profit in experiment I is the highest because
the algorithm learns to increase the bid value in groups g3, g4
and decrease the bid value in groups g1 and g2 (see table III
of ḡα values). In this policy, the bid values are adjusted to
minimize the rejection ratio, defined as the price acceptance
probability, see equation (3) and figure 2).

Experiments III and IV are proposed with the aim of
achieving a target fairness ft. Indeed, the averaged values map
to the selected targets given by ft (ft = 0.90, f = 0.88
and ft = 0.75, f = 0.76 for experiments III and IV ,
respectively). In experiment III the policy keeps the average
price low on g3 to reach a reasonable fairness (f = 88%).
Conversely in experiment IV the calculated policy slightly
increases the bid value in g3 obtaining a less fair policy
(f = 76%) with more revenue. As a heavy penalization for
bid rejections is used in the experiments, given by ν = −0.5,
the bid rejected ratio remains low.

An interesting result arises from the comparison between
fairness in experiments II and V (null model). The average
prices in every group are ∼ 5.5 in the null model because they
are randomly and uniformly selected from A. However, due to
our definition of the rotated Jain’s index in equation (7), the
average fairness in II is slightly higher than that in V .

Related to the learning convergence, a descent in the aver-
age learning rate is a good indicator of learning convergence
[34]. Let p a pair with the form (s, a | s ∈ S, a ∈ A) and Pn
the set of all pairs p visited by the agent. Then, the learning
rate is defined as:

l = E
[
{C(x) | ∀x ∈ P}

]
, where C(x) =

∑
p∈P

δxp. (8)

Figure 8 shows the convergence rate of learning rates
for the experiments proposed. As observed, the learning rate
exhibits a descent to 0, guaranteeing the convergence of the
algorithm.

V. CONCLUSION

Fairness, as an ethical definition, is sometimes seen as
negative by constraining developments [46]. However the

0.2

0.4

0.6

0 100 200 300
Epoch

Le
ar

ni
ng

 R
at

e exp
I
II

III
IV

null

Fig. 8. Learning rate convergence

present paper represents an example in which both customers
and companies can benefit from transparency. Even if there
is a disagreement regarding what is a fair policy in dynamic
pricing, the fairness design principles proposed in section II-B
provide an initial definition based on equality, that constitutes
a promising way to open a rich dialog. In this paper we have
demonstrated that an unfair scenario can be unbiased within a
certain degree (the fairness targets given by ft), by integrating
fairness metrics as part of the model optimization. We cover
the integration of fairness from a resource allocation point of
view, including it as a design principle.

As future work, there are possible extensions to this study.
Firstly, there are many parameter (λ, βp, βf , ν, ...) to tuned
in the learning process, considering the time required to
evaluate each combination of parameters is a challenging task.
Secondly, the comparison with other state-of-the-art models,
like evolutionary algorithms [47], is a valuable asset to an
effective contrast to the Q-learning method proposed. Finally,
more complex environment can be defined including more
variables as time or external factors.

We demonstrate empirically that an effective balance be-
tween revenue and fairness maximization can be achieved
in real time models like RL, in which the model learns
by performing actions in an environment. We proposed a
fairness metrics based on a rotated Jain’s index. We have
developed a synthetic environment to experiment with four
different customer sensitivities. We have also tested several
parametrized experiments, demonstrating that a given balance
between revenue and fairness can be chosen.
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