Skip to main content

A Multi-objective Pareto-Optimal Wrapper Based Framework for Cancer-Related Gene Selection

  • Conference paper
  • First Online:
  • 1776 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 869))

Abstract

In this paper, a multi-criteria feature selection framework is proposed to integrate the wrapper method and Pareto Optimal (PO) method so that cancer-related genes in microarray datasets can be identified. Sequential forward selection is applied for feature selection among cross-validated training sets, and PO is employed as an aggregation method to combine wrapper-based gene selection results from the training sets. The proposed gene selection does not require user intervention and PO also selects each valuable gene when structuring the most representative gene subset. In order to test the performance of the proposed framework, an experimental study has been conducted on three publicly available cancer microarray datasets. The results show that the proposed framework gives robust aggregation and the accuracy is boosted when feature selection results are combined with PO. The findings also demonstrate that the Pareto Optimality based framework is robust against variations in the training sets and is less prone to over fitting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  2. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Feature selection for high-dimensional data. Prog. Artif. Intell. 5(2), 65–75 (2015)

    Article  Google Scholar 

  3. Sarac, F., Uslan, V., Seker, H., Bouridane, A.: Comparison of unsupervised feature selection methods for high-dimensional regression problems in prediction of peptide binding affinity. In: Proceedings Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBS, pp. 8173–8176 (Nov 2015)

    Google Scholar 

  4. Ang, J.C., Mirzal, A., Haron, H., Hamed, H.N.A.: Supervised, unsupervised, and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinforma. 13(5), 971–989 (2016)

    Article  Google Scholar 

  5. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: An ensemble of filters and classifiers for microarray data classification. Pattern Recognit. 45(1), 531–539 (2012)

    Article  Google Scholar 

  6. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J.M., Herrera, F.: A review of microarray datasets and applied feature selection methods. Inf. Sci. (Ny) 282, 111–135 (2014)

    Article  Google Scholar 

  7. Wang, L., Wang, Y., Chang, Q.: Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods 111, 21–31 (2016)

    Article  Google Scholar 

  8. Jovic, A., Brkic, K., Bogunovic, N.: A review of feature selection methods with applications. In: IEEE, pp. 1200–1205 (2015)

    Google Scholar 

  9. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: Data classification using an ensemble of filters. Neurocomputing 135, 13–20 (2014)

    Article  Google Scholar 

  10. Seijo-Pardo, B., Bolón-Canedo, V., Porto-Díaz, I., Alonso-Betanzos, A.: Ensemble feature selection for rankings of features. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9095, pp. 29–42 (2015)

    Chapter  Google Scholar 

  11. Alpaydın, E.: Introduction to Machine Learning, vol. 1107, 2nd edn. The MIT Press, Cambridge, Massachusetts (2014)

    Google Scholar 

  12. Whitney, W.: A direct method of nonparametric measurement selection. IEEE Trans. Comput. 100(9), 1100–1103 (1971)

    Article  Google Scholar 

  13. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  14. Aziz, H., Brandt, F., Harrenstein, P.: Pareto optimality in coalition formation. Games Econ. Behav. 82, 562–581 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms and fuzzy logic. Math. Comput. Simul. 60(3–5), 245–276 (2002)

    Article  MathSciNet  Google Scholar 

  16. Feng, B.: Multisourcing suppliers selection in service outsourcing. J. Oper. Res. Soc. 63(5), 582–596 (2012)

    Article  Google Scholar 

  17. Sudeng, S., Wattanapongsakorn, N.: Post Pareto-optimal pruning algorithm for multiple objective optimization using specific extended angle dominance. Eng. Appl. Artif. Intell. 38, 221–236 (2015)

    Article  Google Scholar 

  18. Chuang, L.-Y., Yang, C.-H., Wu, K.-C., Yang, C.-H.: A hybrid feature selection method for DNA microarray data. Comput. Biol. Med. 41(4), 228–237 (2011)

    Article  Google Scholar 

  19. Luo, L., Ye, L., Luo, M., Huang, D., Peng, H., Yang, F.: Methods of forward feature selection based on the aggregation of classifiers generated by single attribute. Comput. Biol. Med. 41(7), 435–441 (2011)

    Article  Google Scholar 

  20. Ogutcen, O.F., Gormez, Z., Tahir, M.A., Seker, H.: An aggregated cross-validation framework for computational discovery of disease-associative genes. In: IFMBE Proceedings, vol. 57 (2016)

    Chapter  Google Scholar 

  21. Alshamlan, H.M., Badr, G.H., Alohali, Y.A.: Genetic bee colony (GBC) algorithm: a new gene selection method for microarray cancer classification. Comput. Biol. Chem. 56, 49–60 (2015)

    Article  Google Scholar 

  22. Hasnat, A.: Feature selection in cancer microarray data using multi-objective genetic algorithm combined with correlation coefficient. In: 2016 International Conference on Emerging Technological Trends [ICETT] (2016)

    Google Scholar 

  23. Fattah, M.A., Khedr, W.I., Sallam, K.M.: A TOPSIS based method for gene selection for cancer classification. Int. J. Comput. Appl. 67(17), 39–44 (2013)

    Google Scholar 

  24. Dash, R., Misra, B.: Gene selection and classification of microarray data: a Pareto DE approach. Intell. Decis. Technol. 11(1), 93–107 (2017)

    Article  Google Scholar 

  25. Mohamad, M.S., Omatu, S., Deris, S., Yoshioka, M., Abdullah, A., Ibrahim, Z.: An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes. Algorithms Mol. Biol. Biomed Cent. Index. by ISI SCOPUS 8(15), 1–11 (2013)

    Article  Google Scholar 

  26. Nguyen, T., Khosravi, A., Creighton, D., Nahavandi, S.: Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification. PLoS ONE 10(3), 1–23 (2015)

    Google Scholar 

  27. Mortazavi and M.H. Moattar, Robust feature selection from microarray data based on cooperative game theory and qualitative mutual information. Adv. Bioinform. 2016 (2016)

    Article  Google Scholar 

  28. Zhou, Q., Ding, J., Ning, Y., Luo, L., Li, T.: Stable feature selection with ensembles of multirelieff. In: 2014 10th International Conference on Natural Computation, ICNC, pp. 742–747 (2014)

    Google Scholar 

  29. Armanfard, N., Reilly, J.P., Komeili, M.: Local feature selection for data classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1217–1227 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Ogutcen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ogutcen, O.F., Belatreche, A., Seker, H. (2019). A Multi-objective Pareto-Optimal Wrapper Based Framework for Cancer-Related Gene Selection. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems and Applications. IntelliSys 2018. Advances in Intelligent Systems and Computing, vol 869. Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_28

Download citation

Publish with us

Policies and ethics