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Abstract. We present EVE (Equilibrium Verification Environment), a
formal verification tool for the automated analysis of temporal equilib-
rium properties of concurrent and multi-agent systems represented as
multi-player games. Systems are modelled using the Simple Reactive
Module Language (SRML) as a collection of independent system com-
ponents (players/agents in a game), which are assumed to have goals
expressed using Linear Temporal Logic (LTL) formulae. EVE can be
used to check the existence of Nash equilibria in such systems and verify
which temporal logic properties are satisfied in the equilibria.

1 Introduction

We are interested in the verification of concurrent and multi-agent systems in
which system components are modelled as open systems using a game-theoretic
approach. In this approach, multi-agent/concurrent systems correspond to games,
agents/processes to (rational) players, computation runs to plays of the game,
and individual component behaviours to player strategies. Since the classical
notion of correctness is not appropriate in this setting [18], one needs different
concepts to analyse such systems, and game theory provides a natural set of
mathematical tools and solution concepts for that [14]. Among the proposed
solution concepts, Nash equilibrium [15] is considered as the most important in
non-cooperative and multi-player settings.

In this paper, we present EVE (Equilibrium Verification Environment), a
tool for temporal equilibrium analysis of concurrent and multi-agent systems
represented as concurrent games. EVE solves three key decision problems in
rational synthesis and verification [18, 10]: Non-Emptiness, E-Nash, and A-
Nash, which ask, respectively, whether a multi-player game has at least one
(pure-strategy) Nash equilibrium, whether an LTL formula holds on some Nash
equilibrium, and whether an LTL formula holds on all Nash equilibria. EVE uses
the Simple Reactive Modules Language (SRML [2]) to describe such concurrent
and multi-agent systems in a succinct, high-level manner, and Linear Temporal
Logic (LTL [16]) to specify individual player goals and properties to be verified of
a game. EVE uses a technique based on parity games1 to check for the existence of
Nash equilibria in a concurrent and multi-player game, and a model of strategies
that is memoryful and bisimulation invariant. The latter property is important
because bisimilarity is one of the most fundamental features in concurrency

1 A sketch of the main algorithm underlying EVE is provided in Appendix A.
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which allows us to perform modular and compositional reasoning for the semantic
analysis of several concurrent, reactive, and distributed systems.

There are only a couple of existing tools that can be used to reason about
Nash equilibria in multi-player games, PRALINE [4] and MCMAS [17], both of
which are different from EVE in critical ways. PRALINE does not support LTL
goals and uses a model of strategies that is sensitive to bisimilar transformations,
meaning that in PRALINE two games on bisimilar systems may have different
sets of Nash equilibria; cf., [8]2. On the other hand, MCMAS supports model
checking of Strategy Logic (SL [13]), thus making it possible to reason about
Nash equilibria in games with LTL goals; however, MCMAS can check the exis-
tence of Nash equilibria in memoryless strategies only and, like PRALINE, uses
a model of strategies that does not allow for bisimulation-invariant transforma-
tions, which are made, for instance, when using symbolic methods via OBDDs
or some model-minimisation techniques.

2 Tool Description

Modelling Language. Systems in EVE are modelled with the Simple Reactive
Modules Language (SRML [11]), a subset of Reactive Modules [2]. Each
system component (agent/player) in SRML is represented as a module, which
consists of an interface that defines the name of the module and lists a non-
empty set of Boolean variables controlled by the module, and a set of guarded
commands, which define the choices available to the module at each state. There
are two kinds of guarded commands: init, used for initialising the variables, and
update, used for updating variables subsequently; we refer to [11] for further
details on the semantics of SRML. In addition, we associate each module with
a goal, which is specified as an LTL formula.

Implementation and Usage. EVE was developed in Python and is available
online from [1]. EVE takes as input a concurrent and multi-agent system de-
scribed in SRML code, with player goals and a property φ to be checked specified
in LTL. For Non-Emptiness, EVE returns “YES” (along with a set of winning
players W ) if the set of Nash equilibria in the system is not empty, and returns
“NO” otherwise. For E-Nash (A-Nash), EVE returns “YES” if φ holds on some
(all) Nash equilibria of the system, and “NO” otherwise.

3 Case Studies

In this section, we present two examples from the literature of concurrent and
distributed systems to show the practical usage of EVE. Among other things,
these two examples differ in the way they are modelled as a concurrent game.
While the first one is played in an arena implicitly given by the specification of
the players in the game (as done in [10]), the second one is played on a graph,
e.g., as done in [3] with the use of concurrent game structures. Both of these
models of games (modelling approaches) can be used within our tool. We will

2 Experiments based on the examples in this paper are reported in Appendix B.
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Fig. 1: Gossip framework structure.

module RM1 controls s1

init

:: true ∼> s1’:=true;

update

:: s1 ∼> s1’:=false;

:: s1 ∼> s1’:=true;

:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;

goal

:: G F (!s1);

Fig. 2: SRML code modelling RM1.

also use these two examples to evaluate EVE’s performance in practice (and
compare it against MCMAS and PRALINE) in Section 4.

Gossip Protocol. Gossip protocols are a class of networking and communica-
tion protocols that mimic the way social networks disseminate information and
have been used to solve problems in many large-scale distributed systems, such as
peer-to-peer and cloud computing systems. Ladin et al. [12] developed a frame-
work to provide high availability services via replication which is based on the
gossip approach first introduced in [5, 19]. The main feature of this framework
is the use of replica managers (RMs) which exchange “gossip” messages period-
ically in order to keep the data updated. The architecture of such an approach
is shown in Fig. 1.

We can model each RM as a module in SRML as follows: (1) When in ser-
vicing mode, an RM can choose either to keep in servicing mode or to switch
to gossiping mode; (2) If it is in gossiping mode and there is at least another
RM also in gossiping mode3, since the information during gossip exchange is of
(small) bounded size, it goes back to servicing mode in the subsequent step. We
then set the goal of each RM to be able to gossip infinitely often. As shown in
Fig. 2, the module RM1 controls a variable: s1. Its value being true signifies that
RM1 is in servicing mode, otherwise in gossiping mode. Behaviour (1) is reflected
in the first and second update commands, while behaviour (2) is reflected in the
third update command. The goal of RM1 is specified with the LTL formula GF
¬ s1, which expresses that RM1’s goal is to gossip infinitely often: “always” (G)
“eventually” (F) gossip (¬s1).

Observe that with all RMs rationally pursuing their goals, they will adopt
any strategy which induces a run where each RM can gossip (with at least one
other RM) infinitely often. In fact, this kind of game-like modelling gives rise to
a powerful characteristic: on all runs that are sustained by a Nash equilibrium,
the distributed system is guaranteed to have two crucial non-starvation/liveness
properties: RMs can gossip infinitely often and clients can be served infinitely
often. Indeed, these properties are verified in the experiments; E-Nash: no Nash
equilibrium sustains “all RMs forever gossiping”, and A-Nash: in all Nash equi-
libria at least one of the RM is in servicing mode infinitely often.

3 The core of the protocol involves (at least) pairwise interactions periodically.
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Fig. 3: Gifford’s proto-
col modelled as a game.

Replica Control Protocol. Consensus is a funda-
mental issue in distributed computing and multi-agent
systems. One of the obvious domains of application
is in mantaining data consistency. Gifford [7] used a
quorum-based voting protocol to ensure data consis-
tency by not allowing more than one processes to read
or write a data item concurrently. To do this, each
copy of a replicated data item is assigned a vote.

We can model a (modified version of) Gifford’s protocol as a game as follows.
The set of players N = {1, . . . , n} in the game is arranged in a request queue
represented by the sequence of states q1, . . . , qn, where qi means that player i is
requesting to read/write the data item. At state qi, other players in N\{i} can
then vote whether to allow player i to read/write. If the majority of players in N
vote “yes”, then the transition goes to q0, i.e., player i is allowed to read/write,
and otherwise it goes to qi+1

4. The voting process then restarts from q1. The
protocol’s structure is shown in Fig. 3. Notice that at the last state, qn, there
is only one outgoing arrow to q0. As in the previous example the goal of each
player i is to visit q0 right after qi infinitely often, so that the desired behaviour
of the system is sustained on all Nash equilibria of the system: a data item is not
accessed by two processes concurrently and the data is updated in every round.
The associated properties are verified in the experiments in Section 4; E-Nash:
there is no Nash equlibrium in which the data is never updated, A-Nash: in
all Nash equilibria, each player is allowed to request read/write infinitely often.
This example uses a (deterministic) module, called “Environment”, modelling
the underlying concurrent game structure, shown in Fig. 3, where the game is
played.

4 Experimental Evaluation and Conclusions

Experiments. In order to evaluate the practical preformance of our tool and
approach (against MCMAS and PRALINE), we present results on the temporal
equilibrium analysis for the examples in Sec. 3. We ran the tools on the two
examples with different numbers of players (“P”), states (“S”), and edges (“E”).
The experiments were obtained on a PC with Intel i5-4690S CPU 3.20 GHz ma-
chine with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86 64.
We report the running time5 for solving Non-Emptiness (“ν”), E-Nash (“ε”),
and A-Nash (“α”). For the last two problems, since there is no direct support in
PRALINE and MCMAS, we used the reduction of E/A-Nash to Non-Emptiness
presented in [6]. Time-out (“TO”) was fixed to be 7200 seconds.

From the experiments we observe that in general EVE has the best perfor-
mance, followed by PRALINE and MCMAS. Although PRALINE performed better

4 We assume arithmetic modulo (|N| + 1) in this example.
5 In order to carry out a fairer comparison (since PRALINE does not accept LTL goals),

we added to PRALINE’s running time, the amount of time needed to convert LTL
games into its input.
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Table 1: Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2: Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

than MCMAS, both struggled (timed-out) with inputs whose edges are greater
than 100, while EVE could handle up to about 6000 edges (for Non-Emptiness).

Conclusion. We have presented EVE, a tool to analyse temporal equilibrium
properties in concurrent games. Although there are other tools to compute pure
Nash equilibria (PRALINE and MCMAS), they work in different settings. More-
over, while EVE uses a richer (bisimulation-invariant) model of strategies, it still
performed better than the other two tools. In addition, this model of strate-
gies is amenable to the use of powerful techniques for symbolic reasoning and
model minimisation. Another important feature is that, in addition to Non-
Emptiness, EVE has direct support for other problems in the rational verifica-
tion framework [18], namely E-Nash and A-Nash. These two problems can be
considered as counterparts to model checking in game-theoretic settings, making
them very relevant for the formal analysis of multi-agent systems
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A Main Algorithm Sketch

Temporal Equilibrium Analysis. Once a multi-agent system is modelled in
SRML, it can be seen as a multi-player game in which players (the modules)
use strategies to resolve the non-deterministic choices in the system. EVE uses a
novel algorithm to solve Non-Emptiness via a reduction to parity games. The
main idea behind this algorithm, which we will describe next, is illustrated in
Fig. 4. Let GLTL be a game, modelled using SRML, with a set of players/modules
N = {1, . . . , n} and LTL goals Γ = {γ1, . . . , γn}, one for each player. Using GLTL

we construct an associated concurrent game with parity goals GPAR in order
to shift reasoning on the set of Nash equilibria of GLTL into the set of Nash
equilibria of GPAR.

With GPAR in our hands, we can then reason about Nash equilibria by solving
a collection of parity games. As shown in [9], the existence of Nash equilibria
in LTL games can be characterized in terms of punishment strategies, an idea
underlying the algorithm that EVE uses. Intuitively, punishment strategies are
strategies that prevent a player i to achieve its goal γi, thus eliminating any
incentive of i to deviate. EVE then guesses a set of “winners” W ⊆ N and
computes a punishment region Punj(GPAR) for each j ∈ L = N\W , with which
a reduced parity game G−LPAR =

⋂
j∈L Punj(GPAR) is built. Lastly, EVE checks

whether there exists a path ρ in G−LPAR that satisfies the goals of each i ∈W . To do
this, we translate G−LPAR into a deterministic Streett automata, whose language
is empty if and only if so is the set of Nash equilibria of GPAR. For E-Nash
problem, we simply need to find a run in the witness returned when we check
for Non-Emptiness; this can be done via automata intersection6.

B Experiments: Bisimulation Examples

These experiments are taken from the motivating examples in [8]. We extended
the number of states by adding more layers to the game structures used there in

6 For A-Nash is straightforward, since it is the dual of E-Nash.
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Table 3: Example with no Nash equilibrium.

states edges
MCMAS EVE PRALINE

time (s) NE time (s)
disc.

time (s) NE
disc.

time (s) NE

5 80 0.04 No 0.75 0.14 Yes 0.25 No

8 128 0.24 No 2.99 0.22 Yes 0.54 No

11 176 6.28 No 4.80 0.31 Yes 0.80 No

14 224 273.14 No 7.46 0.44 Yes 1.03 No

17 272 TO – 13.31 0.50 Yes 1.30 No
...

...
...

...
...

...
...

...
...

50 800 TO – 655.80 2.58 Yes 4.50 No

Table 4: Example with Nash equilibria

states edges
MCMAS EVE PRALINE

time (s) NE time (s)
disc.

time (s) NE
disc.

time (s) NE

6 96 0.02 Yes 1.09 0.12 Yes 0.25 Yes

9 144 0.77 Yes 3.36 0.24 Yes 0.71 Yes

12 192 65.31 No 7.45 0.40 Yes 1.11 Yes

15 240 TO – 22.24 0.65 Yes 1.59 Yes
...

...
...

...
...

...
...

...
...

51 816 TO – 1314.47 7.22 Yes 8.89 Yes

order to test the practical performance of EVE, MCMAS, and PRALINE. The
experiments were performed on a PC with Intel i7-4702MQ CPU 2.20GHz ma-
chine with 12GB of RAM running Linux kernel version 4.14.16-300.fc26.x86 64.
We divided the test cases based on the number of Kripke states and edges;
then, for each case, we report (i) the total running time (“time”), (ii) whether
the tools find any Nash equilibria (“NE”), and (iii) discounted execution time
(“disc. time”). Discounted execution time is the amount of time used after GPAR

has been built until the tool terminates and outputs the result. This is to enable
a comparison between EVE and PRALINE, since the latter only accepts Büchi
goals (while EVE accepts LTL goals).

Table 3 shows the results of the experiments on the example in which the
model of strategies that depends only on the run (sequence of states) of the game
(called run-based strategies in [8]) cannot sustain any Nash equilibria, a model
of strategies that is not invariant under bisimilarity. Indeed, since MCMAS and
PRALINE use this model of strategies, both did not find any Nash equilibria
in the game, as shown in Table 3. EVE, which uses model of strategies that,
not only depends on the run of the game, but also on the actions of players
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(a bisimulation-invariant model of strategies called computation-based in [8])
found a Nash equilibrium in the game. We can also see that EVE outperformed
MCMAS on games with 14 or more states. In fact, MCMAS timed-out7 on games
with 17 states or more, while EVE kept working efficiently for games of bigger
size. We can also observe in the “disc. time” columns that PRALINE performed
almost as efficiently as EVE in these experiment, although EVE performed better
in both small and large instances.

In Table 4, we used the example in which Nash equilibria can be sustained
using run-based strategies. As shown in the table, MCMAS found Nash equilibria
in games with 6 and 9 states. However, since MCMAS uses imperfect recall,
when the third layer was added (case with 12 states in Table 4) to the game, it
could not find any Nash equilibria. Regarding running times, EVE outperformed
MCMAS from the game with 12 states and beyond, where MCMAS timed-out
on games with 15 or more states. As for PRALINE, it performed comparably to
EVE in this experiment, but again, EVE performed better in all instances.

7 We fixed the time-out value to be 3600 seconds.


