Skip to main content

Towards Understanding Communication Behavior Changes During Floods Using Cell Phone Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11186))

Abstract

Natural disasters such as hurricanes, floods or tornadoes affect millions of individuals every year. As a result, governments spend millions of dollars in emergency response allocating resources to mitigate the damages. Effective resource allocation requires a deep understanding of how humans react when a disaster takes place. Due to the multiplicity of human behavior, however, it is not trivial to understand human behaviors at large scale during and after the disaster. In this paper, we explore the use of Call Detail Records (CDR) data to model people’s responses to flooding events from the communication perspective in Senegal. Specifically, we examine how different levels of flooding affect call volumes and communication network features. Our results show that individuals are more active in calling behaviors during flooding events than under normal conditions, which might imply their support-seeking behavior. Regressions on network features indicate that people in a large city in Senegal might have less access to resources outside of their neighborhoods and require better infrastructures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bardsley, D.K., Hugo, G.J.: Migration and climate change: examining thresholds of change to guide effective adaptation decision-making. Popul. Environ. 32(2–3), 238–262 (2010)

    Article  Google Scholar 

  2. Box, G.E., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. Ser. B (Methodol.) 26, 211–252 (1964)

    Google Scholar 

  3. Candia, J., González, M.C., Wang, P., Schoenharl, T., Madey, G., Barabási, A.L.: Uncovering individual and collective human dynamics from mobile phone records. J. Phys. A Math. Theor. 41(22), 224015 (2008)

    Article  MathSciNet  Google Scholar 

  4. Dobra, A., Williams, N.E., Eagle, N.: Spatiotemporal detection of unusual human population behavior using mobile phone data. PloS One 10(3), e0120449 (2015)

    Article  Google Scholar 

  5. Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029–1031 (2010)

    Article  MathSciNet  Google Scholar 

  6. Elliott, J.R., Pais, J.: Race, class, and hurricane Katrina: social differences in human responses to disaster. Soc. Sci. Res. 35(2), 295–321 (2006)

    Article  Google Scholar 

  7. Frias-Martinez, E., Williamson, G., Frias-Martinez, V.: An agent-based model of epidemic spread using human mobility and social network information. In: IEEE Third International Conference on Social Computing (SocialCom), pp. 57–64. IEEE (2011)

    Google Scholar 

  8. Frias-Martinez, V., Rubio, A., Frias-Martinez, E.: Measuring the impact of epidemic alerts on human mobility using cell-phone network data. In: Second Workshop on Pervasive Urban Applications@ Pervasive, vol. 12 (2012)

    Google Scholar 

  9. Ghurye, J., Krings, G., Frias-Martinez, V.: A framework to model human behavior at large scale during natural disasters. In: 2016 17th IEEE International Conference on Mobile Data Management (MDM), vol. 1, pp. 18–27. IEEE (2016)

    Google Scholar 

  10. Grinberger, A.Y., Lichter, M., Felsenstein, D.: Dynamic agent based simulation of an urban disaster using synthetic big data. In: Thakuriah, P.V., Tilahun, N., Zellner, M. (eds.) Seeing Cities Through Big Data. SG, pp. 349–382. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40902-3_20

    Chapter  Google Scholar 

  11. Hong, L., Fu, C., Torrens, P., Frias-Martinez, V.: Understanding citizens’ and local governments’ digital communications during natural disasters: the case of snowstorms. In: Proceedings of the 2017 ACM on Web Science Conference, pp. 141–150. ACM (2017)

    Google Scholar 

  12. Hong, L., Fu, C., Wu, J., Frias-Martinez, V.: Information needs and communication gaps between citizens and local governments online during natural disasters. Inf. Syst. Front. 1–13 (2018, in press)

    Google Scholar 

  13. Isaacman, S., et al.: Human mobility modeling at metropolitan scales. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 239–252. ACM (2012)

    Google Scholar 

  14. Isaacman, S., Frias-Martinez, V., Frias-Martinez, E.: Modeling human migration patterns during drought conditions in La Guajira, Colombia. In: Proceedings of the ACM First Conference on Computing and Sustainable Societies (2018)

    Google Scholar 

  15. de Montjoye, Y.A., Smoreda, Z., Trinquart, R., Ziemlicki, C., Blondel, V.D.: D4D-Senegal: the second mobile phone data for development challenge. arXiv preprint arXiv:1407.4885 (2014)

  16. Moumni, B., Frias-Martinez, V., Frias-Martinez, E.: Characterizing social response to urban earthquakes using cell-phone network data: the 2012 Oaxaca earthquake. In: Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, pp. 1199–1208. ACM (2013)

    Google Scholar 

  17. NASA: NRT global flood mapping. https://floodmap.modaps.eosdis.nasa.gov (2017). Accessed 25 July 2017

  18. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab (1999)

    Google Scholar 

  19. Palen, L., Starbird, K., Vieweg, S., Hughes, A.: Twitter-based information distribution during the 2009 red river valley flood threat. Bull. Assoc. Inf. Sci. Technol. 36(5), 13–17 (2010)

    Article  Google Scholar 

  20. Pastor-Escuredo, D., et al.: Flooding through the lens of mobile phone activity. In: 2014 IEEE Global Humanitarian Technology Conference (GHTC), pp. 279–286. IEEE (2014)

    Google Scholar 

  21. Roche, S., Propeck-Zimmermann, E., Mericskay, B.: Geoweb and crisis management: issues and perspectives of volunteered geographic information. GeoJournal 78(1), 21–40 (2013)

    Article  Google Scholar 

  22. Rubio, A., Frias-Martinez, V., Frias-Martinez, E., Oliver, N.: Human mobility in advanced and developing economies: a comparative analysis. In: AAAI Spring Symposium: Artificial Intelligence for Development (2010)

    Google Scholar 

  23. Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N., Yokozawa, M.: Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sens. Environ. 109(3), 295–313 (2007)

    Article  Google Scholar 

  24. Schoenharl, T., Bravo, R., Madey, G.: WIPER: leveraging the cell phone network for emergency response. Int. J. Intell. Control. Syst. 11(4), 209–216 (2006)

    Google Scholar 

  25. Smith-Clarke, C., Mashhadi, A., Capra, L.: Poverty on the cheap: estimating poverty maps using aggregated mobile communication networks. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 511–520. ACM (2014)

    Google Scholar 

  26. Solmaz, G., Turgut, D.: Theme park mobility in disaster scenarios. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp. 377–382. IEEE (2013)

    Google Scholar 

  27. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of human emergency behavior and their mobility following large-scale disaster. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 5–14. ACM (2014)

    Google Scholar 

  28. Song, X., et al.: A simulator of human emergency mobility following disasters: knowledge transfer from big disaster data. In: AAAI, pp. 730–736 (2015)

    Google Scholar 

  29. Tomaszewski, B.M., Robinson, A.C., Weaver, C., Stryker, M., MacEachren, A.M.: Geovisual analytics and crisis management. In: Proceedings of the 4th International ISCRAM Conference, pp. 173–179, Delft, The Netherlands (2007)

    Google Scholar 

  30. Wang, Q., Taylor, J.E.: Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster. PLoS One 11(1), e0147299 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong Lee .

Editor information

Editors and Affiliations

Appendix: Example of the Interface of a Decision-Making Map

Appendix: Example of the Interface of a Decision-Making Map

Fig. 2.
figure 2

Example of the interface of a decision-making tool (Color figure online)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, L., Lee, M., Mashhadi, A., Frias-Martinez, V. (2018). Towards Understanding Communication Behavior Changes During Floods Using Cell Phone Data. In: Staab, S., Koltsova, O., Ignatov, D. (eds) Social Informatics. SocInfo 2018. Lecture Notes in Computer Science(), vol 11186. Springer, Cham. https://doi.org/10.1007/978-3-030-01159-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01159-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01158-1

  • Online ISBN: 978-3-030-01159-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics