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Abstract—This paper deals with the problem of massive
random access for Gaussian multiple access channel (MAC). We
continue to investigate the coding scheme for Gaussian MAC
proposed by A. Vem et al in 2017. The proposed scheme consists
of four parts: (i) the data transmission is partitioned into time
slots; (ii) the data, transmitted in each slot, is split into two
parts, the first one set an interleaver of the low-density parity-
check (LDPC) type code and is encoded by spreading sequence
or codewords that are designed to be decoded by compressed
sensing type decoding; (iii) the another part of transmitted
data is encoded by LDPC type code and decoded using a joint
message passing decoding algorithm designed for the T-user
binary input Gaussian MAC; (iv) users repeat their codeword
in multiple slots. In this paper we are concentrated on the third
part of considered scheme. We generalized the PEXIT charts to
optimize the protograph of LDPC code for Gaussian MAC. The
simulation results, obtained at the end of the paper, were analyzed
and compared with obtained theoretical bounds and thresholds.
Obtained simulation results shows that proposed LDPC code
constructions have better performance under joint decoding
algorithm over Gaussian MAC than LDPC codes considered by
A. Vem et al in 2017, that leads to the better performance of
overall transmission system.

I. INTRODUCTION

Current wireless networks are designed with the goal of

servicing human users. Next generation of wireless networks

is facing a new challenge in the form of machine-type com-

munication: billions of new devices (dozens per person) with

dramatically different traffic patterns are expected to go live in

the next decade. The main challenges are associated with: (a)

huge number of autonomous devices connected to one access

point, (b) low energy consumption, (c) short data packets. This

problem has attracted attention (3GPP and 5G-PPP) under the

name of mMTC (massive machine-type communication).

There are K ≫ 1 users, of which only T have data to

send in each time instant. A base station (BS) sends periodic

beacons, announcing frame boundaries, so that the uplink

(user-to-BS) communication proceeds in a frame-synchronized

fashion. Length of each frame is N , where a typical interesting

value is n ≈ 104 − 105 . Each active user has k bits that it

intends to transmit during a frame, where a typical value is

k ≈ 100 bit. The main goal is to minimize the energy-per-

bit spent by each of the users. We are interested in grant-free

access (5G terminology). That is, active users transmit their

data, without any prior communication with the BS (without

resource requests). We will focus on the Gaussian multiple-

access channel (GMAC) with equal-power users, i.e.

Y =

T
∑

t=1

Xt + Z,

where Z ∼ N (0, N0/2) and E
[

|Xi|2
]

≤ P .

This paper deals with construction of low-complexity ran-

dom coding schemes for GMAC (indeed we restrict our

consideration to the case of binary input GMAC). Let us

emphasize the main difference from the classical setting.

Classical information theory provided the exact solutions for

the case of all-active users, i.e. T = K . Almost all well-known

low-complexity coding solutions for the traditional MAC

channel (e.g. [1]) implicitly assume some form of coordination

between the users. Due to the gigantic number users we

assume them to be symmetric, i.e. the users use the same codes

and equal powers. Here we continue the line of work started

in [2]–[4]. In [2] the bounds on the performance of finite-

length codes for GMAC are presented. In [3] Ordentlich and

Polyanskiy describe the first low-complexity coding paradigm

for GMAC. The improvement (it terms of required Eb/N0)

was given in [4].

We continue to investigate the coding scheme from [4]. The

proposed scheme consists of four parts:

• the data transmission is partitioned into time slots;

• the data, transmitted in each slot, is split into two parts,

the first one (preamble) allows to detect users that were

active in the slot. It also set an interleaver of the low-

density parity-check (LDPC) type code [5], [6] and is

encoded by spreading sequence or codewords that are

designed to be decoded by compressed sensing type

decoding;

• the second part of transmitted data is encoded by LDPC

type code and decoded using a joint message passing

decoding algorithm designed for the T -user binary input

GMAC;

• users repeat their codeword in multiple slots and use

successive interference cancellation.

The overall scheme can be called T-fold irregular repetition

slotted ALOHA (IRSA, [7], [8]) scheme for GMAC. The main

difference of this scheme in comparison to IRSA is as follows:
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any collisions of order up to T can be resolved with some

probability of error introduced by Gaussian noise.

In this paper we are concentrated on the third part of consid-

ered scheme. Our contribution is as follows. We generalized

the protograph extrinsic information transfer charts (EXIT)

to optimize the protograph of LDPC code for GMAC. The

simulation results, obtained at the end of the paper, were

analyzed and compared with obtained theoretical bounds and

thresholds. Obtained simulation results shows that proposed

LDPC code constructions have better performance under joint

decoding algorithm over Gaussian MAC than LDPC codes

considered in [4], that leads to the better performance of

overall system.

II. ITERATIVE JOINT DECODING ALGORITHM

By C(t), t ∈ [T ], we denote the codes used by users (the

codes are binary). Recall, that n and R are accordingly the

length and the rate of C(t), k ∈ [T ].

Thus T users send codewords c
(1), c(2), . . . , c(T ). After

BPSK modulator we have the sequences x
(1),x(2), . . . ,x(K),

x
(i) ∈ {−

√
P,+

√
P}n. The channel output (y) is the

element-wise sum of the sequences affected by Gaussian noise.

The aim of joint multi-user decoder is to recover the all the

codewords based on received vector y. The decoder employs a

low-complexity iterative belief propagation (BP) decoder that

deals with a received soft information presented in LLR (log

likelihood ratio) form. The decoding system can be represented

as a graph (factor graph), which is shown in Fig. 1. User

LDPC codes are presented with use of Tanner graphs with

variable and check nodes. At the same time there is a third

kind of nodes in the figure – functional nodes (marked with

green color). These nodes correspond to the elements of the

received sequence y.

Following the by now standard methodology of factor

graphs, see [9], [10], we can write down the corresponding

message passing decoding algorithm.

1) initialize the LLR values of variable nodes for each user

code with zero values assuming equal probability for 1
and −1 values;

2) perform IO outer iterations, where each iteration consists

of the following steps:

a) perform maximum likelihood decoding of func-

tional nodes (i.e. calculate update messages for

variable nodes);

b) perform II inner iterations of BP decoder for users’

LDPC codes and update LLR values of variable

nodes (this is done in parallel);

The BP part is standard, i.e. each user utilizes standard

BP decoding algorithm (Sum-Product or Min-Sum) to decode

an LDPC code. The most interesting part is the decoding of

functional nodes. Following the principles of message-passing

algorithms, the update rule to compute the message (µ) sent to

i-th variable node of k-th user (k = 1, . . . ,K, i = 1, . . . , N )

from a functional node Fi is the following:

Let mk
vc,j denotes the message sent by the variable node v

to the check node c along its jth edge of user k:

mvc,j =

dv−1
∑

i=1, i6=j

mk
cv,i +mk

sv;

where mk
cv,i is the message outgoing from the check node :

mcv,j = 2 tanh−1





dc−1
∏

i=1, i6=j

tanh
mvc,i

2



 ;

and mk
sv is the message outgoing from the state node.

It is also necessary to describe the rule for computing

messages outgoing from state nodes. Let xk
i denote the ith

transmitted code bit and yi denote the channel output. The

outgoing message from the ith variable node of user k to the

connected state node is computed as

mk
vs,i = log

p(xk
i = 1)

p(xk
i = −1)

, em
k
vs,i =

p(xk
i = 1)

p(xk
i = −1)

;

Considering standard function node message-passing rules [9],

we compute the message sent to user k ith variable node from

the state node:

mk
sv,i = log

p(xk
i = 1|y)

p(xk
i = −1|y) =

log











∑

∼x
(k)
i

∏

j 6=k

p(xj
i = 1)p(yi|x

(1)
i , ..., x

(k)
i = 1, ..., x

(n)
i )

∑

∼x
(k)
i

∏

j 6=k

p(xj
i = −1)p(yi|x

(1)
i , ..., x

(k)
i = −1, ..., x

(n)
i )











We can simplify it in the following way:

m
k
sv,i =

log











∑

∼x
(k)
i

∏

j 6=k

e
1xj

Xj
p(yi|x

(1)
i , ..., x

(k)
i = 1, ..., x

(n)
i )

∑

∼x
(k)
i

∏

j 6=k

e
1xj

Xj
p(yi|x

(1)
i , ..., x

(k)
i = −1, ..., x

(n)
i )











, (1)

where 1xk
=

{

1, x
(j)
i = 1

0, x
(j)
i = −1.

.

The number of computations necessary to obtain the outgo-

ing messages from the node Fi grows exponentially with the

number of users, nevertheless, this number of users usually

remains small, and we will therefore not be concerned with

this fact.

III. PEXIT CHARTS

Extrinsic Information Transfer (EXIT) charts [11] can be

used for the accurate analysis of the behavior of LDPC

decoders. But since the usual EXIT analysis cannot be applied

to the study of protograph-based [12] LDPC codes we will use

a modified EXIT analysis for protograph-based LDPC codes

(PEXIT) [13]. This method is similar to the standard EXIT

analysis in that it tracks the mutual information between the

message edge and the bit value corresponding to the variable

node on which the edge is incident, while taking into account
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Fig. 1. Joint decoder graph representation for T = 3

the structure of the protograph. In our work we use the notation

from [13] to describe EXIT charts for protograph-based LDPC

codes.

Let IEv denote the extrinsic mutual information between a

message at the output of a variable node and the codeword bit

associated to the variable node:

IEv = IEv (IAv, IEs) ,

where IAv is the mutual information between the codeword

bits and the check-to-variable messages and IEs is the mu-

tual information between the codeword bits and the state-

to-variable messages. Since the PEXIT tracks the mutual

information on the edges of the protograph, we define IEv(i, j)
as the mutual information between the message sent by the

variable node Vj to the check node Ci and the associated

codeword bit:

IEv(i, j) = J





√

∑

s6=i

[J−1(IAv(s, j))]2 + [J−1(IEs(j))]2





where J(σ) is given by [11]:

J(σ) = 1

−
∞
∫

−∞

1√
2πσ2

exp



−1

2

(

y − σ2

2 x

σ

)2


 log2(1 + e−y)dy.

Similarly, we define IEc , the extrinsic mutual information

between a message at the output of a check node and the

codeword bit associated to the variable node receiving the

message:

IEc = IEc (IAc) ,

where IAc is the mutual information between one input

message and the associated codeword bit and IAc = IEv .

Accordingly, the mutual information between the message sent

by Ci to Vj and the associated codeword bit is described as:

Iec(i, j) = 1− J





√

∑

s6=j

[J−1(1− Iac(i, s))]2



 .

The mutual information between the variable node Vj and

the message passed to the state node is denoted as IEvs(j)
and is given by:

IEvs(j) = J





√

∑

s

[J−1(Iav(s, j))]2



 .

Next we need to compute the mutual information IEs. In

order to get an idea about the probability density function of

(1) for user j, we generate samples of the outgoing LLRs

through (1) based on the samples of the received LLRs from

other users whose PDF is approximated with N (µEvs, 2µEvs),

where µEvs = J−1(IEvs)
2 . To numerically estimate µEs and

obtain the required mutual information as IEs = J(µEs),
we refer to [14], where the following three approaches are

proposed:

• Mean-matched Gaussian approximation : the mean µ is

estimated from samples and we set µEvs = µ and σ2
Evs =

2µ.

• Mode-matched Gaussian approximation : given a suffi-

ciently large number of N samples generated through

(1), the mode m is estimated from samples and we set

µEvs = m and σ2
Evs = 2m.

• Gaussian mixture approximation: mean values µ1, ..., µk

and the weights a1, ..., ak are estimated from samples and

IEs = a1J(µ1) + ...+ akJ(µk).

The rationale for using these approximations was shown in

[14]. Furthermore, the authors compared the performance of

these approaches. The mode-matched method was found to

give the maximum output mutual information and the joint

codes designed by using this approximation also yield the

lowest decoding bit error probability compared to the other

two approaches.

Each user calculate IAPP (j), the mutual information be-

tween the posteriori probability likelihood ratio evaluated by

the variable node Vj and the associated codeword bit.

IAPP (j) = J





√

∑

s

[J−1(IAv(s, j))]2 + [J−1(IEs(j))]2



 .

The convergence is declared if each IAPP (j) reaches 1 as the

iteration number tends to infinity.

IV. NUMERICAL RESULTS

In this section the simulation results, obtained for the cases

T=2 and T=4, are represented. Let us at first consider the

simulation results for T=2 (Fig. 2). For this case we compare

the Frame Error Rate (FER) performance of rate-1/4 LDPC

code (364, 91) from [4] obtained by repetition of each code

bit of regular (3,6) LDPC code twice, rate-1/4 LDPC code

(364, 91) optimized by PEXIT charts method described above

and Polyanskiy’s finite block length (FBL) bound for 2 user
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Fig. 2. Simulation results for T=2 and LDPC code (364, 91)

case. As we can see in Fig. 2 proposed PEXIT-optimized

LDPC code construction outperforms LDPC code construction

from [4] by about 0.5 dB. In the same time the gap between

Polyanskiy’s FBL bound and PEXIT-optimized LDPC code

is about 3 dB. But we would like to point out that used

here Polyanskiy’s FBL bound is for Gaussian signal and not

for Binary Phase-Shift Keying (BPSK) modulation, used for

simulation. So, we believe that this gap will be reduced is FBL

bound for BPSK modulation is used.

Now let us consider simulation results for T=4 (Fig. 3). For

this case we obtain another PEXIT-optimized rate-1/4 LDPC

code (364, 91) and compare FER performance of same LDPC

code from [4] and Polyanskiy’s FBL bound for 4 users. As
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Repeated reg. (3,6) LDPC code
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Fig. 3. Simulation results for T=4 and LDPC code (364, 91)

we can see in Fig. 3 proposed PEXIT-optimized LDPC code

construction outperforms LDPC code construction from [4]

by more than 3 dB. And again the gap between Polyanskiy’s

FBL bound and PEXIT-optimized LDPC code is a little bit

less than 3 dB.

V. SPARSE SPREADING OF LDPC CODES

In this section we answer a very natural question: how to

increase the order of collision, that can be decoded in a slot.

E.g. consider the case from the previous section. Let the slot

length n′ = 364. We want to increase T up to 8. Here we face

with two problems:

• The performance of LDPC joint decoder rapidly becomes

bad with grows of T . We were not able to find (364, 91)
LDPC codes, that work well for T = 8.

• The number of computations necessary to obtain the

outgoing messages from the functional node grows ex-

ponentially with the number of users T .

We address both these problems in a scheme, which is

proposed below (see Fig. 4). The idea is to use sparse

spreading signatures [15] for LDPC codes, such that the degree

of functional node is reduced from T to dc. The slot length is

now n′, n′ 6= n.

1

1

Users

…

…

Resources

…

n

…

n

2

…

n

K

…

dc

…

dc
…

dc

n’2

C1 C2 CT

n
′
=

Tn

dc

Fig. 4. Sparse spreading of LDPC codes

In Fig. 5 we present the simulation results. As we were

not able to find (364, 91) LDPC codes, that work well for

T = 8 we consider 2 times shorter LDPC codes and compare

2 strategies:

• split the slot into 2 parts and send 4 users in each part;

• use sparse spreading;

We see, that our approach is much better and works prac-

tically the same in comparison to the case of 2 times longer

LDPC codes and 2 times smaller number of users (see the

previous section).

VI. CONCLUSION

We generalized the protograph extrinsic information transfer

charts (EXIT) to optimize the protograph of LDPC code for

GMAC. The simulation results, obtained at the end of the

paper, were analyzed and compared with obtained theoretical

bounds and thresholds. Obtained simulation results shows that
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proposed LDPC code constructions have better performance

under joint decoding algorithm over Gaussian MAC than

LDPC codes considered by A. Vem et al in 2017, that leads

to the better performance of overall system.
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