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Abstract. Video capture in the surgical operating room (OR) is in-
creasingly possible and has potential for use with computer assisted inter-
ventions (CAI), surgical data science and within smart OR integration.
Captured video innately carries sensitive information that should not
be completely visible in order to preserve the patient’s and the clinical
teams’ identities. When surgical video streams are stored on a server, the
videos must be anonymized prior to storage if taken outside of the hospi-
tal. In this article, we describe how a deep learning model, Faster R-CNN,
can be used for this purpose and help to anonymize video data captured
in the OR. The model detects and blurs faces in an effort to preserve
anonymity. After testing an existing face detection trained model, a new
dataset tailored to the surgical environment, with faces obstructed by
surgical masks and caps, was collected for fine-tuning to achieve higher
face-detection rates in the OR. We also propose a temporal regulari-
sation kernel to improve recall rates. The fine-tuned model achieves a
face detection recall of 88.05% and 93.45 % before and after applying
temporal-smoothing respectively.
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1 Introduction

Video cameras are pervasive within the modern operating room (OR) and used
extensively during surgery, for example in laparoscopic or robotic assisted surgery,
but with minimal video utilization. Specifically many integrated operating rooms
now incorporate surveillance cameras or documentation cameras integrated within
the surgical lights or in the ceiling. The video data collected by such devices is
highly sensitive because it records events during the operation and also the
identities of staff and patients within the OR. Yet, the video can have multiple
uses in educational material or in the analysis and automation of OR optimisa-
tion systems through surgical data science platforms[I]. To be able to use the
recorded videos in the OR, video processing must take place to ensure the data is
anonymized and safe to be used. It is possible to approach video anonymization
through computer vision algorithms for face detection but making such systems



Fig. 1. FaceOff images, collected from Youtube, showing the faces in the surgical en-
vironment potentially exposing sensitive information

work well in surgical environments is difficult because the OR has variable light-
ing conditions, multiple occlusion possibilities and also the team wears surgical
drapes and masks.

Real-time face detection is a mature field in computer vision [2]. As with
many problems in the field, techniques using hand crafted features such as
HOGI3], have recently been superseded by convolutional neural networks (CNNs)
based approaches using deep learning for detection[d][5][6], pose estimation[7],
and emotion prediction[§]. The introduction of big datasets such as FDDBJ[I0],
IJB-A[9], and WIDERJIT] has empowered the use of deep learning models and
enhanced robustness and efficiency, shown by the evolution of approaches from
recurrent CNN (RCNN) [12], followed by Fast-RCNN[I3], and finally Faster-
RCNN]JI4]. The results for these architectures are impressive but their transla-
tion into the clinical setting faces challenges because the data needs adaptation
to deal with masked faces, surgical caps and the lighting variability within the
room.

In this paper, we adopt the Faster-RCNN model pre-trained on the avail-
able WIDER dataset and we adapt it for face detection in the OR. Faces in
the OR are very different from the WIDER dataset due to masks, caps, and
surgical magnifying glasses. Detecting such faces is difficult and requires model
adaptation, which we achieve through collecting surgical data from web search
engines, labelled and used to fine-tune the model. To achieve anonymization, it
is important that the model catches as many faces as possible. A sliding window
for temporal smoothing was implemented and then applied on the detections to
have a higher chance of detecting any missed face (a false negative). Our method
shows promising results on our validation dataset which will be made available
to the community.



2 Methods and Data

Wider Dataset The dataset consists of 32,203 images with 393,703 faces in
61 different environments (meetings, concerts, parades, etc ... ). It is also worth
noting that this dataset include 166 images (in the training set) of faces in the
surgical environment. This dataset is commonly used for benchmarking face de-
tection. Faster RCNN is in the top 4 of all the submissions that used the WIDER
dataset to benchmark performance[T5].

FaceOff Dataset We collected 15 videos of surgical ORs from the video search
engine Youtube. All were publicly available with ”Standard Youtube License”
(videos can be used freely). The keywords used for searching: surgery, realtime
surgery, surgery in the operating room/theatre, recorded surgery... Figure
shows a sample of the dataset. In total, the dataset consists of 6371 images
describing 12786 faces. The images show variability in scales and occlusions of
faces in the OR to achieve a good learning of the facial features in the OR.

2.1 Faster R-CNN

Faster R-CNN uses a regional proposal network (RPN) that estimates bounding
boxes around regions in the input image. It is scale invariant as it proposes re-
gions of many scales before interrogating each with one of two CNNs: ZFnet[18]
and VGG-16[17]. The convolutional layers are shared with the RPN (unlike the
architecture in Fast R-CNN), making computation efficient. The CNNs evaluate
regions using the intersection of union (IoU) of each anchor with the ground
truth bounding boxes of the input image during training to determine if the
region is used as a positive or negative sample. The RPN proposes around 21000
regions per image but after non-max filtering (NMF) around 2000 valid anchors
remain and only 256 positive anchors, and 256 negative anchors are then chosen
for training.

The loss function of the RPN incorporates several parts shown in the equa-
tions below:
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The first part measures the error of the classifier whether the region is a
class (in this case a face) or not. Where p; is the predicted probability, p} is
either 0 (when the region describes the background class) or 1 (when the region
describes the foreground class, in this case a face), and finally N is the mini-
batch size (in this case 2*256 = 512). The classifier loss as shown in equation
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Fig. 2. The kernel size of the sliding average window is 5. The sliding average kernel
estimates the missing Box2 at frame t by averaging the corresponding detected Boxa
in the adjacent frames € [t — 2,¢ + 2].

is the soft-max loss of the predicted class. The second part tries to measure the
error of box regressors. Where A is a constant, p} is the predicted probability
(this means this part of the equation is only activated for positive anchors where
pf=1),t; is the predicted box, t! the ground truth box, and finally N,., is the
total number of valid anchors (in this case around 2000). The box regressor loss
is the smoothing function of the predicted box as shown in equation . It tries
to minimize the difference between the predicted box and the ground truth box.

2.2 Sliding Kernel Smoother

Despite the excellent performance of a per-frame face detection method, tempo-
ral discontinuities are still possible and need to be handled with a non-detection
driven approach. For anonymization, having a high recall (or low false nega-
tives) is the main target for the model to achieve. While the described Faster
R-CNN captures spatial information exceptionally well it can suffer from period
occlusion or failure when faces turn or enter variable illumination conditions.
But since videos will be inferred using the model, valuable temporal information
can potentially be lost. As illustrated in the Fig 2 schematic, the model some-
times misses faces even though it successfully detected the same face in adjacent
frames. To take advantage of that, a sliding window of kernel sizes k = 3,5,7
were applied to smooth in the detections to be able to anonymize the missed
faces. Doing so will also generate more false positives as the smoothing kernel
does not incorporate visual information. As described in Fig 2, the smoothing
window will apply a moving average on the centre frame ¢ and estimates Boxo
at frame ¢ with the aim of anonymizing a missed face.

3 Experiments and Results

Calculating activations : Given that the model returns a bounding box, a
metric must quantify how correct is that bounding box. This section will explain
how those metrics where calculated. There are 4 detection cases that occur after
inferring the test set. The first case occurs when the intersection over union
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Fig. 3. Left: An example case showing the intuition of picking the right IOU threshold
to calculate the metrics. The green and pink bounding boxes describes the ground truth
and detected face respectively. As seen in the image, the anonymization has occurred
given the area above the mask was detected. The detected region is less than half
the area of the annotated face. Therefore, a threshold of ¢ = 0.3 was used. Right:
The precision and recall as a function of the value of the IOU threshold that counts a
detection whether its a true positive or a false positive

(IOU) between the ground truth box and the predicted box is above a certain
threshold t¢. This detection counts as a true positive. The second case occurs
when there is no detected box close to a ground truth box. This counts as a
false negative. The third case happens when there is a detected box without a
ground truth box around it. This case counts as a false positive. Finally in the
fourth case, when the IOU of the ground truth with the detected bounding box
is lower that a threshold ¢, it counts as a false positive and a false negative (one
for missing the detection, and one for detecting something that is not a face).
To set the threshold ¢, the precision and recall were calculated for 9 possi-
ble values. The results can be seen in the right section of figure 3. Intuitively
speaking, both the precision and recall will drop as the IOU threshold increase
as it will be less likely for the predicted box to be more aligned with the ground
truth. This graph shows that the precision and recall are stable between 0.1 and
0.3. They start slowly decreasing between ¢ € [0.4,0.5]. A sharp drop is observed
after 0.5. After evaluating the above graph, a threshold of ¢ = 0.3 was chosen.
0.3 is a good value for the IOU threshold because faces are mostly covered with
surgical masks. The detections sometimes only cover the eye area as shown in
the left section of figure 3, even thought the ground truth describes the whole
face including the mask. This is a good detection as it anonymizes the face and
therefore it must be counted as a true positive.
WIDER fine-tuning setup: For a better anonymization, detecting normal
faces is also crucial in the operating room. For that, the model from [I5] was
used. This paper fine-tuned a VGG-16 faster r-cnn trained on Imagenet using
the WIDER dataset. They used stochastic gradient descent (SGD) for 50000



Fig. 4. Sample detections of both models. The WIDER trained model detections are
shown in pink and the FaceOff fine-tuned model detections are shown in blue.

iterations with base learning rate of 10~2 and then ran another 30000 iterations
with a base learning rate of 1074,

FaceOff fine-tuning setup: After training the model described above, we fur-
ther fine-tuned the model on the newly collected dataset of faces in the OR. We
trained the model on 8485 faces in the OR for 20000 iterations. The RPN gen-
erates 12000 and 2000 ROIs before and after applying NMF respectively. Model
uses a mini-batch (batch of regions of ROIs) size of 64 (for normalisation), an
IOU threshold of 0.7 and above to consider the ROI as an example of a face,
and an IOU threshold of 0.3 and less to consider the ROI as an example of a
background. The remaining ROIs (with IOU between [0.3,0.7] are discarded).
Finally, a size set of 256 regions per class (256 regions for the face class, and 256
regions for the background class) is used for training.

We inferred the test set using the model trained on the WIDER dataset. The
model returned a precision of 66.84%, a recall of 75.40%, and an F1 score of
70.86%. After those promising results, we fine-tuned the model using the FACE-
OFF collected dataset with the setup discussed above. A precision of 82.58%,
recall of 88.05%, and and f1 score of 85.23% was achieved. A sample of the
detections can be seen in figure [4]

In the surgical environment, the model must achieve a high recall since it is
more important to detect a face than to falsely detect a face. In other words, the
volume of false negatives should be as small as possible irrespective of the volume
of false positives. To take advantage of the temporal information found in a video,
the detections where smoothed around frames with no detections. Surrounding
frames have very similar information with a high probability. Averaging the
surrounding detections around a frame should help in detect false negatives. The
disadvantage of this approach is that it is more likely to generate false positive
than detecting false negatives. After getting the detections from the FaceOff fine-
tuned Faster R-CNN model, a sliding window of kernel k = 3, 5,7 was explored.



Table 1. Surgical face detection metrics of the different models tested.

Model Precision Recall F1
Off-the-shelf 66.84% 75.409 70.86%
Fine-Tuned on FaceOff 82.58% 88.05% 85.23%
Post-Smoothing k = 3 59.07% 93.46% 72.39%
Post-Smoothing k = 5 55.93% 93.45% 69.96%
Post-Smoothing k = 7 53.52% 93.26% 68.01%

Table [I] shows that the kernel of size 3 performed the best achieving a recall of
93.46 %.

4 Discussion and Conclusion

An increasing number of cameras are integrated in the OR (head mounted, ceil-
ing mounted, light integrated, etc.) and anonymization of video is important
in order to be able to use the recorded data for a wide range of purposes like
documentation, teaching and surgical data science. In order to automatically
blur faces in the recorded video, we have described a method and dataset that
adapts the state-of-the-art face detection techniques. Our FaceOff method and
dataset describe faces in the surgical environment and use temporal smooth-
ing to increase the recall of detection and hence increase the effectiveness of
video anonymization. We fine-tuned the Faster R-CNN pretrained on the face-
detection-benchmark WIDER dataset achieving a recall of 88.05 %. Taking ad-
vantage of the temporal nature of the application (anonymizing surgical video),
a sliding average window was applied to the detections to smooth the missed
detected faces reaching a recall of 93.46% on the collected FaceOff test-set. The
work described in our study is a first step towards building the tools and capa-
bilities needed in order to begin taking advantage of surgical data and building
surgical data science pipelines.
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