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Abstract. Semantic correspondence is the problem of establishing corre-
spondences across images depicting different instances of the same object
or scene class. One of recent approaches to this problem is to estimate
parameters of a global transformation model that densely aligns one
image to the other. Since an entire correlation map between all feature
pairs across images is typically used to predict such a global transforma-
tion, noisy features from different backgrounds, clutter, and occlusion
distract the predictor from correct estimation of the alignment. This is a
challenging issue, in particular, in the problem of semantic correspondence
where a large degree of image variations is often involved. In this paper,
we introduce an attentive semantic alignment method that focuses on
reliable correlations, filtering out distractors. For effective attention, we
also propose an offset-aware correlation kernel that learns to capture
translation-invariant local transformations in computing correlation val-
ues over spatial locations. Experiments demonstrate the effectiveness of
the attentive model and offset-aware kernel, and the proposed model
combining both techniques achieves the state-of-the-art performance.

Keywords: Semantic correspondence, attention process, offset-aware
correlation kernels, attentive semantic alignment, local transformation

1 Introduction

Semantic correspodence is the problem of establishing correspondences across
images depicting different instances of the same object or scene class. Compared
to conventional correspondence tasks handling pictures of the same scene, such
as stereo matching [1,2] and motion estimation [3,4,5], the problem of semantic
correspondence involves substantially larger changes in appearance and spatial
layout, thus remaining very challenging. For this reason, traditional approaches
based on hand-crafted features such as SIFT [6,7] and HOG [8,9,10] do not
produce satisfactory results on this problem due to lack of high-level semantics
in local feature representations.

While previous approaches to the problem focus on introducing an effective
spatial regularizer in matching [7,11,9], recent convolutional neural networks have
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Fig. 1: The proposed attentive semantic alignment. Our model estimates dense
correspondences of objects by predicting a set of global transformation parameters
via an attention process. The attention process spatially focuses on the reliable
local transformation features, filtering out irrelevant backgrounds and clutter.

advanced this area by learning high-level semantic features [12,13,14,15,16,17,18].
One of the main approaches [13] is to estimate parameters of a global trans-
formation model that densely aligns one image to the other. In contrast to
other approaches, it casts the whole correspondence problem for all individual
features into a simple regression problem with a global transformation model,
thus predicting dense correspondences through the efficient pipeline. On the
other hand, however, the global alignment approach may be easily distracted; An
entire correlation map between all feature pairs across images is used to predict
such a global transformation, and thus noisy features from different backgrounds,
clutter, and occlusion, may distract the predictor from correct estimation of the
alignment. This is a challenging issue, in particular, in the problem of semantic
correspondence where a large degree of image variations is often involved.

In this paper, we introduce an attentive semantic alignment method that
focuses on reliable correlations, filtering out distractors as shown in Fig. 1. For
effective attention, we also propose an offset-aware correlation kernel that learns
to capture translation-invariant local transformations in computing correlation
values over spatial locations. The resultant feature map of offset-aware correlation
(OAC) kernels is computed from two input features, where each activation of the
feature map represents how smoothly a source feature is transformed spatially to
the target feature map. This use of OAC kernels greatly improves a subsequent
attention process. Experiments demonstrate the effectiveness of the attentive
model and offset-aware kernel, and the proposed model combining both techniques
achieves the state-of-the-art performance.

Our contribution in this work is threefold:

• The proposed algorithm incorporates an attention process to estimate a global
transformation from a set of inconsistent and noisy local transformations for
semantic image alignment.
• We introduce offset-aware correlation kernels to guide the network in cap-
turing local transformations at each spatial location effectively, and employ
the kernels to compute feature correlations between two images for better
representation of semantic alignment.
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• The proposed network with the attention module and offset-aware correlation
kernels achieves the state-of-the-art performances on semantic correspondence
benchmarks.

The rest of the paper is organized as follows. We overview the related work in
Section 2. Section 3 describes our proposed network with the attention process
and the offset-based correlation kernels. Finally, we show the experimental results
of our method and conclude the paper in Section 4 and 5.

2 Related Work

Most approaches to semantic correspondence are based on dense matching of
local image features. Early methods extract local features of patches using hand-
crafted feature descriptors [25] such as SIFT [11,7,26,27] and HOG [9,28,10,29].
In spite of some success, the lack of high-level semantics in the feature repre-
sentation makes the approaches suffer from non-rigid deformation and large
appearance changes of objects. While such challenges have been mainly inves-
tigated in the area of graph-based image matching [28,30,31,32], recent meth-
ods [15,16,17,18,19,20,21,22,23,24] rely on deep neural networks to extract high-
level features of patches for robust matching. More recently, Han et al. [14]
propose a deep neural network that learns both a feature extractor and a match-
ing model for semantic correspondence. In spite of these developments, all these
approaches detect correspondences by matching patches or region proposals
based on their local features. In contrast, Rocco et al. [13] propose a global
transformation estimation method that is the most relevant work to ours. Their
model in [13] predicts the transformation parameters from a correlation map
obtained by computing correlations of every pair of features in source and target
feature maps. Although this model is similar to ours in that it estimates the global
transformation based on correlations of feature pairs, our model is distinguished
by the attention process suppressing irrelevant features and the use of the OAC
kernels constructing local transformation features.

There are some related studies on other tasks using feature correlations such
as optical flow estimation [3] and stereo matching [33,34]. Dosovitskiy et al.[3]
use correlations between features of two video frames to estimate optical flow,
while Zbontar et al.[33] and Luo et al.[34] extract feature correlations from
patches of images for stereo matching. Although all these methods utilize the
correlations, they extract correlations from features in a limited set of candidate
regions. Moreover, unlike ours, they do not explore the attentive process and the
offset-based correlation kernels.

Lately, attention models have been widely explored for various tasks with multi-
modal inputs such as image captioning [35,36], visual question answering [37,38],
attribute prediction [39] and machine translation [40,41]. In these studies, models
attend to the relevant regions referred and guided by another modality such as
language, while the proposed model attends based on a self-guidance. Noh et
al. [42] use an attention process for image retrieval to extract deep local features,
where the attention is obtained from the features themselves as in our work.
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Fig. 2: Overall architecture of the proposed network. It consists of three main
components: feature extractor, local transformation encoder, and attentive global
transformation estimator. For details, see text.

3 Deep Attentive Semantic Alignment Network

We propose a deep neural network architecture for semantic alignment incor-
porating an attention process with a novel offset-aware correlation kernel. Our
network takes as inputs two images and estimates a set of global transformation
parameters using three main components: feature extractor, local transformation
encoder, and attentive global transformation estimator as presented in Fig. 2.
We describe each of these components in details.

3.1 Feature extractor

Given source and target images, we first extract their image feature maps
f src,f trg ∈ RD×H×W using a fully convolutional image feature extractor, where
H and W are height and width of input images, respectively. We use a VGG-
16 [43] model pretrained on ImageNet [44] and extract features from its pool4
layer. We share the weights of the feature extractor for both source and target
images. Input images are resized into 240× 240 and fed to the feature extractor
resulting in 15× 15 feature maps with 512 channels. After extracting the features,
we normalize them using L2 norm.

3.2 Local transformation encoder

Given source and target feature maps from the feature extractor, the model
encodes local transformations of the source features with respect to the target
feature map. The encoding is given by introducing a novel offset-aware correlation
(OAC) kernel, which facilitates to overcome limitations of conventional correlation
layers [13]. We briefly describe details of the correlation layer including its
limitations and discuss the proposed OAC kernel.
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Correlation layer The correlation layer computes correlations of all pairs of
features from the source and the target images [13]. Specifically, the correlation
layer takes two feature maps as its inputs and constructs a correlation map
c ∈ RHW×H×W , which is given by

ci,j = f srci,j
>f̂ trg, (1)

where ci,j ∈ c is a HW dimensional correlation vector at a spatial location
(i, j), f srci,j ∈ f src is a feature vector at a location (i, j) of the source image, and
f̂ trg ∈ RD×HW is a spatially flattened feature map of f trg of the target image.
In other words, each correlation vector ci,j consists of correlations between a
single source feature f srci,j and all target features of f trg. Although each element of
a correlation vector maintains the correspondence likelihood of a source feature
onto a certain location in the target feature map, the order of elements in
the correlation vector is based on the absolute coordinates of individual target
features regardless of the source feature location. This means that decoding
the local displacement of the source feature requires not only the vector itself
but also the spatial location of the source feature. For example, consider a
correlation vector ci,j = [1, 0, 0, 0]> between 2× 2 feature maps, each element of
which is the correlation of f srci,j with f trg0,0 , f

trg
0,1 , f

trg
1,0 and f trg1,1 . The displacement

represented by the vector varies with the coordinate of the source feature (i, j).
When (i, j) = (0, 0), it indicates that the source feature f src0,0 remains at the same
location (0, 0) in the target feature map. When (i, j) = (0, 1), it implies that f src0,1

is moved to the left of its original location in the target feature map.
Given a correlation map, decoding the local displacement of a source feature

requires incorporating the offset information from the source feature to individual
target features. And, this local process is crucial for subsequent spatial attention
process in the next section. Therefore, we first introduce an offset-aware correlation
kernel that utilizes the offset of features during the kernel application.

Offset-aware correlation kernels Similarly to the correlation layer, our OAC
kernels also take two input feature maps and utilize correlations of all feature
pairs between these feature maps. The kernels naturally capture the displacement
of a source feature in the target feature map by aligning kernel weights based on
the offset between the source and target features for each correlation as illustrated
in Fig. A. Formally speaking, an OAC kernel captures feature displacement of a
source feature f srci,j by

h
(n)
i,j =

H∑
k=1

W∑
l=1

w
(n)
i−k,j−lci,j;k,l (2)

=

H∑
k=1

W∑
l=1

w
(n)
i−k,j−lf

src
i,j
>f trgk,l , (3)

where h(n)i,j is the kernel output with the kernel index n, ci,j;k,l is the correlation
between a source feature f srci,j and a target feature f trgk,l , and Φ(n) = {w(n)

s,t } is
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Fig. 3: Offset-aware correlation kernel at different source locations: (a) at (0, 0)
and (b) at (0, 1). Each dotted line connects source and target features to compute
correlation, and wi,j represents a kernel weight for the dotted line. Note that
kernel weights are associated with different correlation pairs when source locations
vary.

a set of the kernel weights. Note that the kernel weights are indexed by offset
between the source and target features, and shared for correlations of any feature
pair with the same offset. For example, in Fig. 3a, w0,0 is associated with the
target feature at (0, 0) because the source location is (0, 0). The same weight
w0,0 is associated with the target feature at (0, 1) when the source location is
(0, 1) as in Fig. 3b because the offset between these features is (0, 0). Also note
that each kernel output h(n)i,j at a location (i, j) captures the displacement of its
corresponding source feature f srci,j at the same location.

While a proposed kernel captures a single aspect of feature displacement, a
set of the proposed kernels produce a dense feature representation of feature
displacement for each source feature. We use 128 OAC kernels resulting in a
feature displacement map h ∈ R128×15×15 encoding the displacement of each
source feature. We set ReLU as the activation functions of the kernel outputs,
and compute normalized correlations in OAC kernels since normalization further
improves the scores as observed in [13].

In practice, the proposed OAC kernels are implemented by two sub-procedures.
We first compute the normalized correlation map reordered based on the offsets
between the locations of the source and target features. In this reordered correla-
tion map, every correlation with the same relative displacement is arranged in
the same channel. This reordering results in (2H − 1)(2W − 1) possible offsets
and thus the size of the output tensor becomes (2H−1)(2W −1)×H×W where
many of the values are zeros due to non-existing pairs for some offsets. Then, we
use a 1× 1 convolutional layer to compute the dense feature representation from
the raw displacement information captured in the reordered correlation map.
Note that this process significantly reduces the number of channels by compactly
encoding various aspects of the local displacements into dense representations.
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⊙
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Fig. 4: Illustration of attention process. Noisy features in local transformation
feature map are filtered by assigning lower probabilities to these locations. Arrows
in boxes of local transformation feature map demonstrate features encoding
local transformations, and grayscale colors in attention distribution represent
magnitudes of probabilities where brighter colors mean higher probabilities.

Encoding local transformation features Since the feature displacement map
conveys the movement of each source feature independently, each feature alone
is not sufficient to predict the global transformation parameters. To allow the
network predicts the global transformation from local features in the attention
process, we construct a local transformation feature map by combining spatially
adjacent feature displacement information captured by h. That is, the proposed
network feeds the feature displacement map h to a 7× 7 convolution layer with
128 output channels applied without padding. This convolution layer results
in a local transformation feature map F ∈ R128×9×9. Note that each feature
ti,j ∈ F captures transformations occurred in a local region. We utilize this local
transformation feature map to predict the global transformation through an
attention process.

3.3 Attentive global transformation estimator

After local transformation encoding, a set of global transformation parameters is
estimated with an attention process. Given a local transformation feature map
F ∈ RD̂×Ĥ×Ŵ extracted by OAC kernels with a convolution layer, the network
focuses on reliable local transformation features by filtering out distracting
regions as depicted in Fig. 4 to predict the parameters from the aggregation
of those features. Although a feature map F gives sufficient information to
predict the global transformation from source to target, local transformation
features extracted from a real image pair is noisy due to image variations such as
background clutter and intra-class variations. Therefore, we propose a model that
suppresses unreliable features by the attention process and extracts an attended
feature vector that summarizes local transformations from all reliable locations to
estimate an accurate global transformation. In other words, the model computes
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an attended transformation feature τatt by

τatt =

Ĥ∑
i=1

Ŵ∑
j=1

αi,jG(ti,j), (4)

where G : RD̂ → RD′
is a projection function of ti,j into a D′ dimensional vector

space and α = {αi,j} is an attention probability distribution over feature map.
The model computes the attention probabilities by

αi,j =
exp (S(ti,j))∑Ĥ

k=1

∑Ŵ
l=1 exp (S(tk,l))

, (5)

where S : RD̂ → R is an attention score function producing a single scalar given
a local transformation feature. Note that the model learns to suppress noisy
features by assigning low attention scores and reducing their contribution to the
attended feature.

Once the attended feature τatt over all local transformations is obtained, we
compute the global transformation θ ∈ RQ by a simple matrix-vector multiplica-
tion as

θ =Wτatt, (6)

whereW ∈ RQ×D′
is a weight matrix for linear projection of the attended feature

τatt.
In summary, we first compute local transformation between two images and

perform a nonlinear embedding using a projection function G(·). The embedded
vector is weighted by spatial attention to compute an attended feature τatt as
shown in Eq. (4). The global transformation vector is obtained by linear projection
of the attended feature, which is parametrized by a matrix as presented in Eq. (6).

We use multi-layer perceptrons (MLPs) for G and S in Eq. (4) and (5). G
is a two-layer MLP with 128 hidden and output ReLU activations. Since the
feature representations produced by G is directly used for the final estimation
as a linear mapping in Eq. (6), we additionally concatenate 5-dimensional index
embedding to the feature ti,j ∈ F to better estimate the global transformation
from local transformation features. While S is another two-layer MLP with 64
hidden ReLU activations, its output is a scalar without non-linearity; this is
due to the application of softmax normalization outside S. Note that we do not
use the index embedding to avoid strong biases of attentions on certain regions.
Since G and S are applied to all feature vectors across the spatial dimensions,
we implement them by multiple 1× 1 convolutions with batch normalizations.

Network training We build two of the proposed networks with different para-
metric global transformations: affine and thin-plate spline (TPS) transformations.
To train the network, we adapt the average transformed grid distance loss
proposed in [13], which indirectly measures the distance from the predicted
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transformation parameters θ to the ground-truth transformation parameters θGT.
Given θ and θGT, the transformed grid distance TGD(θ, θGT) is obtained by

TGD(θ, θGT) =
1

|G|
∑
g∈G

d (Tθ (g) , TθGT
(g))

2 (7)

where G is a set of points in a regular grid, Tθ is the transformation parameterized
by θ and d(·) is a distance measure. We minimize the average TGD of training
examples to train the network. Since every operation within the proposed network
is differentiable, the network is trainable end-to-end using a gradient-based
optimization algorithm. We use ADAM [45] with initial learning rate of 2× 10−4

and batch size of 32 for 50 epochs. During training, the pretrained feature
extractor is fixed and only the other parts of the network are finetuned.

4 Experiments

We evaluate the proposed method on public benchmarks for semantic corre-
spondence estimation. The experiments demonstrate that the proposed at-
tentive method and OAC kernels are effective in semantic alignment, sub-
stantially improving the baseline models. The codes are publicly released at
http://cvlab.postech.ac.kr/research/A2Net/.

4.1 Experimental settings

Training with self-supervision While the loss function requires the full super-
vision of θGT, it is very expensive or even impractical to collect exact ground-truth
transformation parameters for non-rigid objects involving intra-class variations.
Therefore, it is hard to scale up to numerous instances and classes, restricting
generalization. For example, the largest annotation dataset at this time, PF-
PASCAL, only contains total 1,351 image pairs from 20 classes, and furthermore
their dense annotations are extrapolated from sparse keypoints, thus being not
fully exact. To work around this problem, we adopt the self-supervised learning
for semantic alignment, which is free from the burden of any manual annotation,
is an appealing alternative introduced in [13]. In this framework, given a public
image dataset D without any annotations, we synthetically generate a training
example (Isrc, Itrg) by randomly sampling an image Isrc from D and computing
a transformed image Itrg by applying a random transformation θGT. We also
use mirror padding and center cropping following [13] to avoid border artifacts.
The synthetic image pairs generated by this process are annotated with the
ground-truth transformation parameters θGT allowing us to train the network
with full supervision. Note that, however, this training scheme can be considered
unsupervised since no annotated real dataset is used during training.

For the synthetic dataset generation, we use PASCAL VOC 2011 [46], and
build two variations of training datasets with either affine or TPS transformation
each for its corresponding network. A set of PASCAL VOC images is kept
separate to generate another set of synthetic examples for validation and the
best performing models on the validation set is evaluated.

http://cvlab.postech.ac.kr/research/A2Net/
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Evaluation Two public benchmarks called PF-WILLOW and PF-PASCAL [9]
are used for the evaluation. PF-WILLOW consists of about 900 image pairs
generated from 100 images of 5 object classes. PF-PASCAL contains 1351 image
pairs of 20 object classes. Each image pair in both datasets contains different
instances of the same object class such as ducks and motorbikes, e.g., left two
images in Fig. 1. The objects in these datasets have large intra-class variations
and many background clutters making the task more challenging. The image pairs
of both PF-WILLOW and PF-PASCAL are annotated with sparse key points that
establishe correspondences between two images. Following the standard evaluation
metric, the probability of correct keypoint (PCK) [47] of these benchmarks,
our goal is to correctly transform the key points in the source image to their
corresponding ones in the target image. A transformed source key point is
considered correct if its distance to its corresponding target key point is less than
α ·max(h,w), where α = 0.1, and h and w are height and width of the object
bounding box. Formally, PCK of a proposed modelM is measured by

PCK(M) =

N∑
i=1

∑
(ps,pt)∈Pi

1 [d (Tθi (ps) , pt) < α ·max(h,w)]

N∑
i=1

|Pi|
, (8)

where N is the total number of image pairs, Pi is a set of source and target key
point pairs (ps, pt) for ith example, θi is predicted transformation, and 1 is the
indicator function which returns 1 if the expression inside brackets is true and 0
otherwise.

We evaluate three different versions of the proposed model as in [13]. The
first two versions are the models with different transformations: affine and TPS
transformations. The other version sequentially merges these two models. That
is, the input image pair are first fed to the network with affine transformation,
and the image pair transformed by its out is then fed to the network with TPS
transformation.

4.2 Results

Comparisons to other models Table 1 shows the comparative results on both
PF-WILLOW and PF-PASCAL benchmarks. It includes (i) previous methods
using hand-crafted features: DeepFlow [5], GMK [31], SIFTFlow [7], DSP [11],
and ProposalFlow [9], (ii) self-supervised alignment methods: GeoCNN [13] and
the proposed attentive alignment network (A2Net), (iii) supervised methods:
UCN [12], FCSS [17], and SCNet [14]. Note that the supervised methods are
trained with either a weakly or strongly annotated data and that many of their
PCKs are measured under a different criterion that are not directly comparable
to the other scores. By contrast, our method is only trained using synthetic data
with self-supervision. As shown in Table 1, the proposed method substantially
outperforms all the other methods that are directly comparable. Using VGG-16
feature extractor, the proposed method improves 12.5 % and 8 % of PCK over
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Table 1: Experimental results on PF-WILLOW and PF-PASCAL. PCK is mea-
sured with α = 0.1. Scores for other models are brought from [9,13,14] while
scores marked with an asterisk (*) are drawn from the reproduced models by
released official codes. The PCK scores marked with a dagger (†) are borrowed
from [14] measuring them with respect to the entire image size instead of the
bounding box size. Note that the PCK score with respect to the bounding box size
is more conservative than the one with respect to the image size, resulting in lower
scores. For example, PCK scores of A2Net on PF-PASCAL measured by image
sizes are 0.59 (affine), 0.65 (affine+TPS) and 0.71 (affine+TPS; ResNet101).

Models PCK (α = 0.1)
PF-WILLOW PF-PASCAL

H
an

d-
cr
af
te
d

DeepFlow [5] 0.20 0.21
GMK [31] 0.27 0.27
SIFTFlow [7] 0.38 0.33
DSP [11] 0.29 0.30
ProposalFlow (NAM) [9] 0.53 –
ProposalFlow (PHM) [9] 0.55 –
ProposalFlow (LOM) [9] 0.56 0.45

Se
lf
Su

p.

GeoCNN (affine) [13] 0.49 0.39*
GeoCNN (affine+TPS) [13] 0.56 0.50*
A2Net (affine) 0.52 0.46
A2Net (affine+TPS) 0.63 0.54
A2Net (affine+TPS; ResNet101) 0.68 0.59

Su
pe

rv
is
ed

UCN [12] 0.42† 0.56†

FCSS [17] 0.58 –
SCNet-A [14] 0.73† 0.66†

SCNet-AG [14] 0.72† 0.70†

SCNet-AG+ [14] 0.70† 0.72†

the non-attentive alignment method [13] on PF-WILLOW and PF-PASCAL,
respectively. This reveals the effect of the proposed attention model for semantic
alignment. The quality of the model is further improved when incorporated
with a more advanced feature extractor such as ResNet101. It is notable that
the proposed model outperforms some of supervised methods, UCN [12] and
FCSS [17], while it is trained without any real datasets.

Ablation study As our proposed model combines two distinct techniques we
perform ablation studies to demonstrate their effects. We mainly compare the
proposed model to GeoCNN as it directly predicts the global transformation
parameters using the correlation layer. To see the effect of the proposed OAC
kernels, we build a model, referred to as GeoCNN+OACK, by replacing the
correlation layer of GeoCNN with the OAC kernels. As shown in Tabel 2, the
use of the OAC kernels already improves the performances of GeoCNN for all
three versions. Moreover, the OAC kernels reduce the number of parameters in
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Table 2: PCKs of ablations on PF-WILLOW trained with PASCAL VOC 2011.
Scores of GeoCNN are obtained from the code released by the authors. The
numbers of network parameters exclude the feature extractors since all models
share the same feature extractor.

Models # of params Affine TPS Affine+TPS
GeoCNN [13] 1.63M (x1.7) 0.430 0.539 0.560
GeoCNN+Attention 1.41M (x1.5) 0.423 0.478 0.476
GeoCNN+OACK 1.12M (x1.2) 0.491 0.555 0.609
Attention+OACK (A2Net) 0.95M (x1.0) 0.521 0.563 0.626

Table 3: PCKs of affine models on PF-WILLOW with different training datasets:
PASCAL VOC 2011 and Tokyo Time Machine. Scores for GeoCNN are brought
from [13].

Models PASCAL VOC 2011 Tokyo Time Machine
GeoCNN [13] 0.45 0.49
A2Net 0.52 0.51

the network since it uses dense representations of local transformations allowing
channel compression. Applying attention process on top of correlation layer
(GeoCNN+Attention) drops the performance. This is because the correlation map
does not encode local transformations in a translation invariant representations.
On the other hand, the attention process with the OAC kernels, which is the
proposed model, further improves the performances as the distracting regions
can be suppressed during the transformation estimation thanks to the local
transformation feature map obtained by the OAC kernels. It is also notable
that applying the attention process reduces the number of model parameters
because the model does not need extra layers that combine all local information
to produce the global estimation; instead, the models simply aggregate local
features with attention distribution. This additional parameter reduction results
in 70 % fewer parameters than GeoCNN while the models maintain superior
performance improvements.

Sensitivity to training datasets While both our model and GeoCNN are
generally applicable to any image datasets, we experiment the sensitivity of
the models to changing training datasets. We train both models with the affine
transformation on another image dataset, called Tokyo Time Machine [48], using
the same synthetic generation process, and show how much the performances
change depending on the datasets. Table 3 shows that the proposed model is less
dependent on the choice of the training dataset compared to GeoCNN.

Qualitative results with attention visualizations Fig. 5 presents some
qualitative examples of our model on PF-PASCAL. In our experimental setting,
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Source image Attention map Target image
Transformed

(affine)

Transformed

(affine+TPS)

Fig. 5: Qualitative results of the attentive semantic alignment. Each row shows an
example of PF-PASCAL benchmark. Given the source and target images shown
in first and third columns, we visualize the attention maps of the affine model
(second column), the transformed image by the affine model (fourth column) and
the final transformed image by the affine+TPS model (last column). Since the
models learn inverse transformation, the target image is transformed toward the
source image while the attention distribution is drawn over the source image.
The model attends to the objects to match and estimates dense correspondences
despite intra-class variations and background clutters.

the models learn to predict inverse transformation. Therefore, we transform the
target image toward the source image using the estimated inverse transformation
whereas the attention distribution is drawn over the source image. The proposed
model attends to the target objects with other regions suppressed and predicts
the global transformation based on reliable local features. The model estimates
the transformation despite large intra-class variations such as an adult vs. a kid.

We also investigate some failure cases of the proposed model in Fig. 6. The
model is confused when there are multiple objects of the same class in an
image or have a large obstacles occluding the matching objects. Also, objects
in some examples are hard to visually recognize and lead mismatches. For
instance, the model fails to correctly match a wooden chair to a transparent
chair although the model attends to the correct region in the second example of
Fig. 6. It is challenging even for human to recognize the transparent chair and
its corresponding key points.

5 Conclusion

We propose a novel approach for semantic alignment. Our model facilitates an
attention process to estimate global transformation from reliable local transfor-
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Fig. 6: Some failure cases of the proposed model with the affine transformation.
Each row shows an example of PF-PASCAL. Each example contains 1) source
image, 2) source image masked by attention distribution, 3) target image and
4) target image transformed by the predicted affine parameters. Even though
the model attends to the matching objects, the model fails to find the correct
correspondences due to multiple objects of the same class causing ambiguity or
hard examples that are difficult to visually percept.

mation features by suppressing distracting features. We also propose offset-aware
correlation kernels that reorder correlations of feature pairs and produce a dense
feature representation of local transformations. The experimental results show
the attentive model with the proposed kernels achieves the state-of-the-art per-
formances with large margins over previous methods on the PF-WILLOW and
PF-PASCAL benchmarks.
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Supplementary Material

A Evaluation on Other Datasets

We have evaluated the proposed model on two more datasets: Taniai’s dataset [10]
and Caltech 101 [49].

Results on on Taniai’s dataset Taniai’s dataset [10] contains 400 image pairs
in three subsets: FG3DCar (195 pairs from [50]), JODS (81 pairs from [51]) and
PASCAL (124 pairs from [52]). Each image pair in this dataset is annotated with
dense flows based on key points. Following [10], we measure flow accuracy which
is the percentage of correctly transferred flows. Each flow is considered correct if
the distance between the estimated flow and the ground-truth flow is less than 5
pixels.

Table A shows the results on Taniai’s dataset. Our model shows higher flow
accuracies over all other models on every subset of the dataset. Especially, we
emphasize that the proposed model shows significant gains over GeoCNN which
uses a single end-to-end neural network for global transformation estimation as
in our model.

Results on Caltech-101 Caltech-101 [49] consists of 1515 image pairs of 101
object classes. Unlike other datasets, these image pairs are not annotated with
dense correspondences. Instead, we utilize the annotated segmentation masks
for the evaluation. Following [13], we measure label transfer accuracy (LT-ACC)
and intersection over union (IoU) of transformed masks. LT-ACC measures the
accuracy of pixel-level segmentation labels between the transformed masks and
the ground-truth masks, and IoU measures the intersection over union of those
masks. We believe that localization error (LOC-ERR) used in [13,9,14] is not
appropriate for evaluating dense correspondences as it measures the error based
on the bounding box information extracted from masks losing the precise details,
but we report this score for completeness.

Table B shows the results on Caltech-101. Our model shows the best score in
IoU and LT-ACC over all the methods.

B Visualizations of OAC Kernel Weights

We visualize the learned weights of OAC kernels in the proposed model. Fig. A
presents three examples of kernel weights arranged by the offsets along with X
and Y axes. Kernel weights are focused on a certain region with similar offsets
capturing a displacement to that direction.

C More Qualitative Results

We present additional qualitative results from Caltech-101 dataset. In Fig. B,
segmentation masks of source images are transformed and visualized on target
images.
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Table A: Flow accuracies with error threshold with 5 pixels on Taniai’s dataset.
Scores of DCTM is obtained with VGG-16 feature extractor as in our method
since the FCSS feature extractor in the original paper is trained with a weak
supervision.

Models FG3DCar JODS PASCAL Average
DFF [25] 0.50 0.30 0.22 0.31
DSP [26] 0.49 0.47 0.38 0.45
SIFT Flow [7] 0.63 0.51 0.36 0.50
Zhou et al. [23] 0.72 0.51 0.44 0.56
Taniai et al. [10] 0.83 0.60 0.48 0.64
Proposal Flow [9] 0.79 0.65 0.53 0.66
DCTM (VGG-16) [16] 0.79 0.61 0.53 0.63
GeoCNN [13] 0.85 0.64 0.53 0.67
Proposed 0.87 0.67 0.55 0.70

Table B: Results on Caltech-101. *The scores for GeoCNN are reproduced using
publicly released code by the authors and show slightly lower LT-ACC.

Models LT-ACC IoU LOC-ERR
DeepFlow [5] 0.74 0.40 0.34
GMK [31] 0.77 0.42 0.34
DSP [26] 0.77 0.47 0.35
SIFT Flow [7] 0.75 0.48 0.32
Proposal Flow [9] 0.78 0.50 0.25
GeoCNN [13]* 0.79 0.56 0.28
Proposed 0.80 0.57 0.28

D Effect of Pretrained Network

To investigate the importance of the pretrained recognition capability of the fea-
ture extractor, we evaluated our model on different test subsets using Caltech101
dataset. The first subset consists of test pairs containing objects that appear in
ImageNet, which is used to pretrain our feature extractor, and the second subset
contains pairs whose objects are unseen at the pretraining. We use Caltech101
dataset for this experiment because almost all objects in PF-WILLOW and PF-
PASCAL also appear in ImageNet. Table C summarizes IoU results of our model
on the test subsets. We can see that pairs of objects that appear in ImageNet show
slightly better performance than the other pairs. However, the gap is relatively
small, indicating that the model is still capable of predicting transformations of
objects that are unseen during the pretraining. We conjecture that this is because
our alignment prediction (1) relies on the feature correlations, which are less
class-specific than the raw features themselves, and (2) uses intermediate-level
visual features (extracted at pool4), which are rather class-agnostic compared to
higher-level features.
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Fig.A: Visualizations of some offset-aware correlation kernels. Each kernel cap-
tures displacements by learning pointy weights focused on a region with similar
offsets.

Table C: IoU on different test subsets of Caltech-101. See text for detail.
Affine TPS Affine+TPS

ImageNet objects 0.54 0.56 0.58
Other objects 0.52 0.53 0.56
All objects 0.53 0.55 0.57

E Experiments on Cross-class Matching

We also conduct the cross-class matching experiments as done in the work of
[18]. As the authors have neither provided their code online nor responded to our
request yet, we did our best to reproduce the experimental settings of [18] for
ourselves. However, some of the descriptions are unclear and thus there might be
some differences. In the experiment of measuring weighted IoU (wIoU) of part
segmentations for cross-class objects on the PASCAL Parts dataset, where the
best model in [18] produces wIoU of 37.5 %, our method shows a competitive
wIoU of 35.0 %. As mentioned earlier, this may be due to the use of the feature
correlations, rather than the raw features themselves, in alignment prediction. If
the features of cross-class objects share similar representations, our method is
still capable of predicting the alignment between them.
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Fig. B: Qualitative examples from Caltech-101. Each row presents different exam-
ples including source image (first column), target image (second column), target
image with affine transformed source mask (third column), and target image
with TPS transformed source mask (fourth column).
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