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Abstract
While in supervised learning, the validation error is an unbiased estimator of the
generalization (test) error and complexity-based generalization bounds are abun-
dant, no such bounds exist for learning a mapping in an unsupervised way. As a
result, when training GANs and specifically when using GANs for learning to map
between domains in a completely unsupervised way, one is forced to select the hy-
perparameters and the stopping epoch by subjectively examining multiple options.
We propose a novel bound for predicting the success of unsupervised cross domain
mapping methods, which is motivated by the recently proposed Simplicity Princi-
ple. The bound can be applied both in expectation, for comparing hyperparameters
and for selecting a stopping criterion, or per sample, in order to predict the success
of a specific cross-domain translation. The utility of the bound is demonstrated in
an extensive set of experiments employing multiple recent algorithms. Our code is
available at https://github.com/sagiebenaim/gan_bound.

1. Introduction

In unsupervised learning, the process of selecting hyperparameters and the lack of
clear stopping criteria are a constant source of frustration. This issue is commonplace
for GANs [1] and the derived technologies, in which the training process optimizes
multiple losses that balance each other. Practitioners are often uncertain regarding
the results obtained when evaluating GAN-based methods, and many avoid using
these altogether. One solution is to employ more stable methods such as [2]. However,
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these methods do not always match the results obtained by GANs. In this work, we
offer, for an important family of GAN methodologies, an algorithm for selecting the
hyperparameters, as well as a stopping criterion.

Specifically, we focus on predicting the success of algorithms that map between
two image domains in an unsupervised manner. Multiple GAN-based methods have
recently demonstrated convincing results, despite the apparent inherent ambiguity,
which is described in Sec. 2. We derive what is, as far as we know, the first error
bound for unsupervised cross domain mapping.

In addition to the novel capability of predicting the success, in expectation, of a
mapping that was trained using one of the unsupervised mapping methods, we can
predict the success of mapping every single sample individually. This is remarkable for
two reasons: (i) even supervised generalization bounds do not deliver this capability;
and (ii) we deal with complex multivariate regression problems (mapping between
images) and not with classification problems, in which pseudo probabilities are often
assigned.

In Sec. 2, we formulate the problem and present background on the Simplicity
Principle of [3]. Then, in Sec. 3, we derive the prediction bounds and introduce
multiple algorithms. Sec. 4 presents extensive empirical evidence for the success of
our algorithms, when applied to multiple recent methods. This includes a unique
combination of the hyperband method [4], which is perhaps the leading method in
hyperparameter optimization, in the supervised setting, with our bound. This com-
bination enables the application of hyperband in unsupervised learning, where, as far
as we know, no hyperparameter selection method exists.

1.1 Related Work

Generative Adversarial Networks GAN [1] methods train a generator network
G that synthesizes samples from a target distribution, given noise vectors, by jointly
training a second, adversarial, network D. Conditional GANs employ a vector of
parameters that directs the generator, in addition to (or instead of) the noise vector.
These GANs can generate images from a specific class [5] or based on a textual
description [6], or invert mid-level network activations [7]. Our bound also applies
in these situations. However, this is not the focus of our experiments, which target
image mapping, in which the created image is based on an input image [8, 9, 10, 11,
12, 13, 14].
Unsupervised Mapping The validation of our bound focuses on recent cross-
domain mapping methods that employ no supervision, except for sample images from
the two domains. This ability was demonstrated recently [8, 9, 10, 14] in image to
image translation and slightly earlier for translating between natural languages [15].

The DiscoGAN [8] method, similar to other methods [9, 10], learns mappings in
both directions, i.e., from domain A to domain B and vice versa. Our experiments also
employ the DistanceGAN method [14], which unlike the circularity based methods,
is applied only in one direction (from A to B). The constraint used by this method
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is that the distances for a pair of inputs x1, x2 ∈ A before and after the mapping, by
the learned mapping G, are highly correlated, i.e., ||x1 − x2|| ∼ ||G(x1)−G(x2)||.
Weakly Supervised Mapping Our bound can also be applied to GAN-based meth-
ods that match between the source domain and the target domain by also incorpo-
rating a fixed pre-trained feature map f and requiring f -constancy, i.e, that the
activations of f are the same for the input samples and for mapped samples [12, 16].
During training, the various components of the loss (GAN, f-constancy, and a few
others) do not provide a clear signal when to stop training or which hyperparameters
to use.
Generalization Bounds for Unsupervised Learning Only a few generalization
bounds for unsupervised learning were suggested in the literature. In [17], PAC-
Bayesian generalization bounds are presented for density estimation. [18] gives an
algorithm for estimating a bounded density using a finite combination of densities
from a given class. This algorithm has estimation error bounded by O(1/

√
n). Our

work studies the error of a mapping and not the KL-divergence with respect to a
target distribution. Further, our bound is data-dependent and not based on the
complexity of the hypothesis class.
Hyperparameter Optimization Hyperparameters are constants and configura-
tions that are being used by a learning algorithm. Hyperparameter selection is the
process of selecting the hyperparameters that will produce better learning. This in-
cludes optimizing the number of epochs, size and depth of the neural network being
trained, learning rate, etc. Many of the earlier hyperparameter methods that go be-
yond a random- or a grid-search were Bayesian in nature [19, 20, 21, 22, 23]. The
hyperband method [4], which is currently leading various supervised learning bench-
marks, is based on the multi-arm bandit problem. It employs partial training and
dynamically allocates more resources to successful configurations. All such methods
crucially rely on a validation error to be available for a given configuration, which
means that these can only be used in the supervised settings. Our work enables, for
the first time, the usage of such methods also in the unsupervised setting, by using
our bound in lieu of the validation error for predicting the ground truth error.

2. Problem Setup

In Sec. 2.1 we define the alignment problem. Sec 2.2 illustrates the Simplicity Principle
which was introduced in [3] and was verified with an extensive set of experiments.
Sec. 2.3 and everything that follows are completely novel. The section proposes the
Occam’s razor property, which extends the definition of the Simplicity Principle, and
which is used in Sec. 3 to derive the main results and algorithms.

2.1 The Alignment Problem

The learning algorithm is provided with two unlabeled datasets: one includes i.i.d
samples from a first distribution and the second, i.i.d samples from a second distri-
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bution.

SA = {xi}mi=1
i.i.d∼ Dm

A and SB = {yi}ni=1
i.i.d∼ Dn

B
(1)

DA and DB are distributions over XA and XB (resp.). In addition, yAB denotes the
target function, which is one of the functions that map the first domain to the second,
such that yAB◦DA = DB (g◦D is defined to be the distribution of g(x) where x ∼ D).
The goal of the learner is to fit a function G ∈ H, for some hypothesis class H that
is closest to yAB, i.e,

inf
G∈H

RDA
[G, yAB] (2)

where RD[f1, f2] = E
x∼D

[`(f1(x), f2(x))], for a loss function ` : RM × RM → R and

distribution D.
It is not clear that such fitting is possible, without additional information. Assume,

for example, that there is a natural order on the samples in XB. A mapping that maps
an input sample x ∈ XA to the sample that is next in order to yAB(x), could be just
as feasible. More generally, one can permute the samples in XA by some function Π
that replaces each sample with another sample that has a similar likelihood and learn
G that satisfies G = Π ◦ yAB. This difficulty is referred to in [3] as “the alignment
problem”.

In multiple recent contributions [15, 8, 9, 10], circularity is employed. Circularity
requires the recovery of both yAB and yBA = y−1AB simultaneously. Namely, functions
G and G′ are learned jointly by minimizing the following objective:

disc(G ◦DA, DB) + disc(G′ ◦DB, DA) +RDA
[G′ ◦G, IdA] +RDB

[G ◦G′, IdB] (3)

where
disc(D1, D2) = sup

c1,c2∈C

∣∣RD1 [c1, c2]−RD2 [c1, c2]
∣∣

(4)

denotes the discrepancy between distributions D1 and D2, and C is a set of discrimi-
nators. This discrepancy is implemented by a GAN, as in [24].

As shown in [3], the circularity constraint does not eliminate the uncertainty in
its entirety. In DistanceGAN [14], the circularity was replaced by a multidimensional
scaling type of constraint, which enforces a high correlation between the distances
in the two domains. However, since these constraints hold only approximately, the
ambiguity is not completely eliminated.

2.2 The Simplicity Principle

In order to understand how the recent unsupervised image mapping methods work
despite the inherent ambiguity, [3] recently showed that the target (“semantic”) map-
ping yAB is typically the distribution preserving mapping (h ◦ DA = DB) with the
lowest complexity. It was shown that such mappings are expected to be unique.

As a motivating example to the key role of minimal mappings, consider the domain
A of uniformly distributed points (x1, x2)

> ∈ R2, where x1 = x2 ∈ [−1, 1]. Let B
be the domain of uniformly distributed points in {(x1, x2)>|x1 ∈ [0, 1], x2 = 0} ∪

4



(-1,0) (0,0) (1,0)

(0,-1)

(0,1)

(-1,0) (0,0) (1,0)

(0,-1)

(0,1)

(a) (b)

Figure 1: An illustrative example, where the two domains are the blue and green
areas. There are infinitely many mappings that preserve the uniform distribution on
the two domains. However, only two stand out as “semantic”. These two, which are
depicted in red, are exactly the two mappings that can be captured by a minimal
neural network with ReLU activations. (a) the mapping y1AB. (b) the mapping y2AB
(see Eq. 5).

{(x1, x2)>|x2 ∈ [0, 1], x1 = 0}. We note that there are infinitely many mappings from
domain A to B that, given inputs in A, result in the uniform distribution of B and
satisfy the circularity constraint (Eq. 3).

However, it is easy to see that when restricting the hypothesis class to neural
networks with one layer of size 2, and ReLU activations σ, there are only two options
left. In this case, h(x) = σa(Wx), for W ∈ R2×2,b ∈ R2. The only admissible

solutions are of the form W =

(
a 1− a
b −1− b

)
or W ′ =

(
a −1− a
b 1− b

)
, which

are identical, for every a, b ∈ R, to one of the following functions:

y1AB((x, x)>) =

{
(x, 0)> if x ≥ 0
(0,−x)> if x ≤ 0

and y2AB((x, x)>) =

{
(0, x)> if x ≥ 0
(−x, 0)> if x ≤ 0

(5)

Therefore, by restricting the hypothesis space to be minimal, we eliminate all
alternative solutions, except two. These two are exactly the two mappings that
would commonly be considered “more semantic” than any other mapping, see Fig. 1.
Another motivating example can be found in [3].

2.3 Occam’s Razor

We note that the Simplicity Principle, presented in [3], is highly related to the prin-
ciple known as Occam’s razor. In this section we provide a definition of the Occam’s
razor property which extends the formulation of the Simplicity Principle used in [3].
Our formulation is not limited to Kolmogorov-like complexity of multi-layered neural
networks as in [3] and is more general.
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Given two domains A = (XA, DA) and B = (XB, DB), a mapping yAB : XA → XB
satisfies the Occam’s razor property between domains A and B, if it has minimal
complexity among the functions h : XA → XB that satisfy h ◦ DA ≈ DB. Minimal
complexity is defined by the nesting of hypothesis classes, which forms a partial
order, and not as a continuous score. For example, if Hj is the set of neural networks
of a specific architecture and Hi is the set of neural networks of the architecture
obtained after deleting one of the hidden neurons, then,Hi ⊂ Hj. Intuitively, minimal
complexity would mean that there is no sub-class that can implement a mapping
h : XA → XB such that h ◦DA ≈ DB. For this purpose, we define,

P(H; ε) =
{
G ∈ H

∣∣∣ disc(G ◦DA, DB) ≤ ε
}

(6)

Definition 1 (Occam’s razor property). Let A = (XA, DA) and B = (XB, DB) be
two domains and U = {Hi}i∈I be a family of hypothesis classes. A mapping yAB :
XA → XB satisfies an (ε1, ε2)-Occam’s razor property if for every H ∈ U such that
P(H; ε1) 6= ∅, we have: inf

G∈P(H;ε1)
RDA

[G, yAB] ≤ ε2.

Informally, according to Def. 1, a function satisfies the Occam’s razor property,
if it can be approximated by even the lowest-complexity hypothesis classes that suc-
cessfully map between the domains A and B. If yAB has the (ε1, ε2)-Occam’s razor
property, then it is ε2-close to a function in every minimal hypothesis class H ∈ U
such that P(H; ε1) 6= ∅. As the hypothesis class H grows, so does P(H; ε1), i.e.,
Hi ⊂ Hj implies that P(Hi; ε1) ⊂ P(Hj; ε1). Therefore, the growing P(H; ε1) would
always contain at least one function that is ε2-close to yAB. Nevertheless, as the hy-
pothesis class grows, P(H; ε1) can potentially contain many functions f that satisfy
f ◦DA ≈ DB and differ from each other, causing an increased amount of ambiguity.
In addition, we note that uniqueness is not assumed, and the property may hold for
multiple mappings.

3. Estimating the Ground Truth Error

In this section, we introduce a bound on the generalization risk between a given
function G1 ∈ H and an unknown target function yAB, i.e., RDA

[G1, yAB]. This bound
is based on a bias-variance decomposition and sums two terms: the bias error and
the approximation error. The bias error is the maximal risk possible with a member
G2 of the class P(H; ε1), i.e., sup

G2∈P(H;ε1)

RDA
[G1, G2]. The approximation error is the

minimal possible risk between a member G of the class P(H; ε1) with respect to yAB,
i.e., inf

G∈P(H;ε1)
RDA

[G, yAB].

3.1 Derivation of the Bound and the Algorithms

The bound is a consequence of using a loss ` that satisfies the triangle inequality.
Losses of this type include the L1 loss, which is often used in cross domain mapping.
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The L2 loss satisfies the triangle inequality up to a factor of three, which would incur
the addition of a factor into the bound.

Lemma 2. Let A = (XA, DA) and B = (XB, DB) be two domains, U = {Hi}i∈I be a
family of hypothesis classes and ε1 > 0. In addition, assume that ` is a loss function
that satisfies the triangle inequality. Then, for all H ∈ U such that P(H; ε1) 6= ∅ and
two functions yAB and G1, we have:

RDA
[G1, yAB] ≤ sup

G2∈P(H;ε1)

RDA
[G1, G2] + inf

G∈P(H;ε1)
RDA

[G, yAB] (7)

Proof Let G∗ = arg inf
G∈P(H;ε1)

RDA
[G, yAB]. By the triangle inequality, we have:

RDA
[G1, yAB] ≤RDA

[G1, G
∗] +RDA

[G∗, yAB]

≤ sup
G2∈P(H;ε1)

RDA
[G1, G2] + inf

G∈P(H;ε1)
RDA

[G, yAB] (8)

If yAB satisfies Occam’s razor, then the approximation error is lower than ε2 and by
Eq. 7 in Lem. 2 the following bound is obtained:

RDA
[G1, yAB] ≤ sup

G2∈P(H;ε1)

RDA
[G1, G2] + ε2 (9)

Eq. 9 provides us with an accessible bound for the generalization risk. The right
hand side can be directly approximated by training a neural network G2 that has a
discrepancy lower than ε1 and has the maximal risk with regards to G1, i.e.,

sup
G2∈H

RDA
[G1, G2] s.t: disc(G2 ◦DA, DB) ≤ ε1 (10)

By applying Lagrange relaxation, we obtain the following Lagrangian dual form:

L(G2, λ) = RDA
[G1, G2] + µ · (ε1 − disc(G2 ◦DA, DB)) (11)

Therefore, instead of computing Eq. 10, we maximize the dual form in Eq. 11. For
convenience, we will use the following equivalent representation of it:

max
G2

RDA
[G1, G2] + µ · (ε1 − disc(G2 ◦DA, DB))

⇐⇒ min
G2

−RDA
[G1, G2]− µ · (ε1 − disc(G2 ◦DA, DB))

⇐⇒ min
G2

disc(G2 ◦DA, DB)− (1/µ) ·RDA
[G1, G2]− ε1

λ:=1/µ⇐⇒ min
G2

disc(G2 ◦DA, DB)− λRDA
[G1, G2]

(12)

The expectation over x ∼ DA (resp x ∼ DB) in the risk and discrepancy are replaced,
as is often done, with the sum over the training samples in domain A (resp B). Based
on this, we present a stopping criterion in Alg. 1, and a method for hyperparameter
selection in Alg. 2. Eq. 11 is manifested in Step 4 of the former and Step 6 of the
latter is the selection criterion that appears as the last line of both algorithms.
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Algorithm 1 Deciding when to stop training G1

Require: SA and SB: unlabeled training sets; H: a hypothesis class; ε1: a threshold;
λ: a trade-off parameter; T2: a fixed number of epochs for G2; T1: a maximal
number of epochs.

1: Initialize G0
1 ∈ H and G0

2 ∈ H randomly.
2: for i = 1, ..., T1 do
3: Train Gi−1

1 for one epoch to minimize disc(Gi−11 ◦DA, DB), obtaining Gi
1.

4: Train Gi
2 for T2 epochs to minimize disc(Gi2 ◦DA, DB)− λRDA

[Gi1, G
i
2].

. T2 provides a fixed comparison point.
5: end for
6: return Gt

1 such that: t = arg min
i∈[T ]

RDA
[Gi1, G

i
2].

Algorithm 2 Model Selection

Require: SA and SB: unlabeled training sets; U = {Hi}i∈I : a family of hypothesis
classes; ε: a threshold; λ: a trade-off parameter.

1: Initialize J = ∅.
2: for i ∈ I do
3: Train Gi

1 ∈ Hi to minimize disc(Gi1 ◦DA, DB).
4: if disc(Gi1 ◦DA, DB) ≤ ε then
5: Add i to J .
6: Train Gi

2 ∈ Hi to minimize disc(Gi2 ◦DA, DB)− λRDA
[Gi1, G

i
2].

7: end if
8: end for
9: return Gi

1 such that: i = arg min
j∈J

RDA
[Gj1, G

j
2].

3.2 Bound on the Loss of Each Sample

We next extend the bound to estimate the error `(G1(x), yAB(x)) of mapping by G1

a specific sample x ∼ DA. Lem. 3 follows very closely to Lem. 2. It gives rise to
a simple method for bounding the loss of G1 on a specific sample x. Note that the
second term in the bound does not depend on G1 and is expected to be small, since
it denotes the capability of overfitting on a single sample x.

Lemma 3. Let A = (XA, DA) and B = (XB, DB) be two domains and H a hypothesis
class. In addition, let ` be a loss function satisfying the triangle inequality. Then, for
any target function yAB and G1 ∈ H, we have:

`(G1(x), yAB(x)) ≤ sup
G2∈P(H;ε)

`(G1(x), G2(x)) + inf
G∈P(H;ε)

`(G(x), yAB(x)) (13)

Similarly to the analysis done in Sec. 3, Eq. 13 provides us with an accessible
bound for the generalization risk. The RHS can be directly approximated by training
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Algorithm 3 Bounding the loss of G1 on sample x

Require: SA and SB: unlabeled training sets; H: a hypothesis class; G1 ∈ H: a
mapping; λ: a trade-off parameter; x: a specific sample.

1: Train G2 ∈ H to minimize disc(G2 ◦DA, DB)− λ`(G1(x), G2(x)).
2: return `(G1(x), G2(x)).

a neural network G2 of a discrepancy lower than ε and has maximal loss with regards
to G1, i.e.,

sup
G2∈H

`(G1(x), G2(x)) s.t: disc(G2 ◦DA, DB) ≤ ε (14)

With similar considerations as in Sec. 3, we replace Eq. 14 with the following objective:

min
G2∈H

disc(G2 ◦DA, DB)− λ`(G1(x), G2(x)) (15)

As before, the expectation over x ∼ DA and x ∼ DB in the discrepancy are replaced
with the sum over the training samples in domain A and B (resp.).

In practice, we modify Eq. 15 such that x is weighted to half the weight of all
samples, during the training of G2. This emphasizes the role of x and allows us to
train G2 for less epochs. This is important, as a different G2 must be trained for
measuring the error of each sample x.

3.3 Deriving an Unsupervised Variant of Hyperband using the Bound

In order to optimize multiple hyperparameters simultaneously, we create an unsu-
pervised variant of the hyperband method [4]. Hyperband requires the evaluation of
the loss for every configuration of hyperparameters. In our case, our loss is the risk
function, RDA

[G1, yAB]. Since we cannot compute the actual risk, we replace it with
our bound sup

G2∈P(H;ε1)

RDA
[G1, G2].

In particular, the function ‘run then return val loss’ in the hyperband algorithm
(Alg. 1 of [4]), which is a plug-in function for loss evaluation, is provided with our
bound from Eq. 9 after training G2, as in Eq. 11. Our variant of this function is listed
in Alg. 4. It employs two additional procedures that are used to store the learned
models G1 and G2 at a certain point in the training process and to retrieve these to
continue the training for a set amount of epochs. The retrieval function is simply a
map between a vector of hypermarkets and a tuple of the learned networks and the
number of epochs T when stored. For a new vector of hyperparameters, it returns
T = 0 and two randomly initialized networks, with architectures that are determined
by the given set of hyperparameters. When a network is retrieved, it is then trained
for a number of epochs that is the difference between the required number of epochs
T , which is given by the hyperband method, and the number of epochs it was already
trained, denoted by Tlast.
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Algorithm 4 Unsupervised run then return val loss for hyperband

Require: SA, SB, and λ as before. T : Number of epochs. θ: Set of hyperparameters
1: [G1, G2, Tlast] = return stored functions(θ)
2: Train G1 for T − Tlast epochs to minimize disc(G1 ◦DA, DB).
3: Train G2 for T − Tlast epochs to minimize disc(G2 ◦DA, DB)− λRDA

[G1, G2].
4: store functions(θ, [G1, G2, T ])
5: return RDA

[G1, G2].

Table 1: Pearson correlations and the corresponding p-values (in parentheses) of the
ground truth error with: (i) the bound, (ii) the GAN losses, and (iii) the circularity
losses or (iv) the distance correlation loss. ∗The cycle loss A→ B → A is shown for
DiscoGAN and the distance correlation loss is shown for DistanceGAN.

Alg. Method Dataset Bound GANA GANB CycleA/LD∗ CycleB

Alg. 1 Disco- Shoes2Edges 1.00 (<1E-16) -0.15 (3E-03) -0.28 (1E-08) 0.76(<1E-16) 0.79(<1E-16)
GAN [8] Bags2Edges 1.00 (<1E-16) -0.26 (6E-11) -0.57 (<1E-16) 0.85 (<1E-16) 0.84 (<1E-16)

Cityscapes 0.94 (<1E-16) -0.66 (<1E-16) -0.69 (<1E-16) -0.26 (1E-07) 0.80 (<1E-16)
Facades 0.85 (<1E-16) -0.46 (<1E-16) 0.66 (<1E-16) 0.92 (<1E-16) 0.66 (<1E-16)
Maps 1.00 (<1E-16) -0.81 (<1E-16) 0.58 (<1E-16) 0.20 (9E-05) -0.14 (5E-03)

Distance- Shoes2Edges 0.98 (<1E-16) - -0.25 (2E-16) -0.14 (1E-05) -
GAN [14] Bags2Edges 0.93 (<1E-16) - -0.08 (2E-02) 0.34 (<1E-16) -

Cityscapes 0.59 (<1E-16) - 0.22 (1E-11) -0.41 (<1E-16) -
Facades 0.48 (<1E-16) - 0.03 (5E-01) -0.01 (9E-01) -
Maps 1.00 (<1E-16) - -0.73 (<1E-16) 0.39 (4E-16) -

Alg. 2 Disco- Shoes2Edges 0.95 (1E-03) 0.73 (7E-02) 0.51 (2E-01) 0.05 (9E-01) 0.05 (9E-01)
GAN [8] Bags2Edges 0.99 (2E-06) 0.64 (2E-01) 0.54 (3E-01) -0.26 (7E-01) -0.20 (7E-01)

Cityscapes 0.99 (1E-03) 0.69 (9E-02) 0.85 (2E-02) -0.53 (2E-01) -0.42 (4E-01)
Facades 0.94 (1E-03) -0.33 (4E-01) 0.88 (4E-02) 0.66 (8E-02) -0.45 (3E-01)
Maps 1.00 (1E-03) 0.62 (1E-01) 0.54 (2E-01) 0.60 (2E-01) 0.07 (9E-01)

Distance- Shoes2Edges 0.96 (1E-04) - 0.33 (5E-01) -0.87 (6E-03) -
GAN [14] Bags2Edges 0.98 (1E-05) - -0.11 (8E-01) 0.23 (6E-01) -

Cityscapes 0.92 (1E-03) - 0.66 (8E-02) -0.49 (2E-01) -
Facades 0.84 (2E-02) - 0.75 (5E-02) 0.37 (4E-01) -
Maps 0.95 (1E-03) - -0.43 (3E-01) -0.15 (7E-01) -

Alg. 3 Disco- Shoes2Edges 0.92 (<1E-16) -0.12 (5E-01) 0.02 (9E-01) 0.29 (6E-02) 0.15 (4E-01)
GAN [8] Bags2Edges 0.96 (<1E-16) 0.25 (1E-01) 0.08 (6E-01) 0.08 (6E-01) 0.05 (7E-01)

Cityscapes 0.78 (4E-04) 0.24 (4E-01) -0.16 (6E-01) -0.04 (9E-01) 0.03 (9E-01)
Facades 0.80 (6E-10) 0.13 (4E-01) 0.16 (3E-01) 0.20 (2E-01) 0.09 (5E-01)
Maps 0.66 (1E-03) 0.08 (7E-01) 0.12 (6E-01) 0.17 (5E-01) -0.25 (3E-01)

Distance- Shoes2Edges 0.98 (<1E-16) - -0.05 (7E-01) 0.84 (<1E-16) -
GAN [14] Bags2Edges 0.92 (<1E-16) - -0.28 (2E-01) 0.45 (3E-02) -

Cityscapes 0.51 (4E-04) - 0.10 (5E-01) 0.28 (2E-2) -
Facades 0.72 (<1E-16) - -0.01 (1E00) 0.08 (6E-01) -
Maps 0.94 (1E-06) - 0.20 (2E-01) 0.30 (6E-02) -

4. Experiments

We test the three algorithms on two unsupervised alignment methods: DiscoGAN [8]
and DistanceGAN [14]. In DiscoGAN, we train G1 (and G2), using two GANs and
two circularity constraints; in DistanceGAN, one GAN and one distance correlation

10
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(Alg 1, discoGAN) (Alg 1, distanceGAN) (Alg 2, discoGAN) (Alg 2, distanceGAN)

Figure 2: Results of Alg. 1, 2. Ground truth errors are in red and bound in black.
x-axis is the iteration or number of layers. y-axis is expected risk. For Alg. 1 it takes
a few epochs for G1 to have a small enough discrepancy, until which the bound is
ineffective.

loss are used. The published parameters for each dataset are used, except when
applying our model selection method, where we vary the number of layers and when
using hyperband, where we vary the learning rate and the batch size as well.

Five datasets were used in the experiments: (i) aerial photographs to maps, trained
on data scraped from Google Maps [13], (ii) the mapping between photographs from
the cityscapes dataset and their per-pixel semantic labels [25], (iii) architectural pho-
tographs to their labels from the CMP Facades dataset [26], (iv) handbag images [27]
to their binary edge images as obtained from the HED edge detector [28], and (v) a
similar dataset for the shoe images from [29].
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(Maps) (Cityscapes) (Facades) (Shoes2Edges) (Bags2Edges)

Figure 3: Results of Alg. 3. Results shown for DiscoGAN for the first row and for
DistanceGAN in the second row. The ground truth errors (x-axis) vs. bound (y-axis)
are shown per point. The coefficient of determination is shown (top right).

(a) (b)

Figure 4: Results of Alg. 3 on DiscoGAN bags2edges. (a) The ground truth errors vs.
the bound per point are shown. This is the same as Fig. 3 top right plot with added
information identifying specific points. (b) The source (x), ground truth (yAB(x))
and mapping (G1(x)) of the marked points.

Throughout the experiments, fixed values are used as the low-discrepancy thresh-
old (ε1 = 0.2). The tradeoff parameter between the dissimilarity term and the fitting
term during the training of G2 is set, per dataset, to be the maximal value such that
the fitting of G2 provides a solution that has a discrepancy lower than the threshold,
disc(G2 ◦DA, DB) ≤ ε1. This is done once, for the default parameters of G1, as given
in the original DiscoGAN and DistanceGAN [8, 14].

The results of all experiments are summarized in Tab. 1, which presents the cor-
relation and p-value between the ground truth error, as a function of the independent
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(Handbags2Edges, discoGAN) (Shoes2Edges, distanceGAN) (Maps, distanceGAN)

Figure 5: Per-epoch per-sample results for three experiments, four points each. x-axis is

iteration. y-axis is the per-sample error. Red line indicates the ground truth error of an

individual sample, i.e ||G1(x) − y(x)||1. Black line indicates our bound for an individual

sample, i.e ||G1(x)−G2(x)||1. Note that it takes a few epochs for G1 to have a small enough

discrepancy, until which the bound is ineffective.

variable, and the bound. The independent variable is either the training epoch, the
architecture, or the sample, depending on the algorithm tested. For example, in Alg. 2
we wish to decide on the best architecture, the independent variable is the number
of layers. A high correlation (low p-value) between the bound and the ground truth
error, both as a function of the number of layers, indicates the validity of the bound
and the utility of the algorithm. Similar correlations are shown with the GAN losses
and the reconstruction losses (DiscoGAN) or the distance correlation loss (Distance-
GAN), in order to demonstrate that these are much less correlated with the ground
truth error. In the plots of Fig. 2, we omit the other scores in order to reduce clutter.
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(a) (b)

Figure 6: Applying unsupervised hyperband for selecting the best configuration for UNIT
for the Maps dataset. (a) blue and orange lines are bound and ground truth error as in
Fig. 7. (b) Images produced for 3 different configurations as indicated on the plot in (a).

Stopping Criterion (Alg. 1) For testing the stopping criterion suggested in Alg. 1,
we compared, at each time point, two scores that are averaged over all training
samples: ||G1(x)−G2(x)||1, which is our bound, and the ground truth error ||G1(x)−
yAB(x)||1, where yAB(x) is the ground truth image that matches x in domain B.

Note that similar to the experiments with ground truth in the literature [8, 9, 14],
the ground truth error is measured in the label space and not in the image domain.
The mapping in the other direction yBA is not one to one.

The results are depicted in the main results table (Tab. 1) as well as in Fig. 2
for both DiscoGAN (first column) and DistanceGAN (second column). As can be
seen, there is an excellent match between the mean ground truth error of the learned
mapping G1 and the predicted error. No such level of correlation is present when
considering the GAN losses or the reconstruction losses (for DiscoGAN), or the dis-
tance correlation loss of DistanceGAN. Specifically, the very low p-values in the first
column of Tab. 1 show that there is a clear correlation between the ground truth
error and our bound for all datasets. For the other columns, the values in question
are chosen to be the losses used for G1. The lower scores in these columns show that
none of these values are as correlated with the ground truth error, and so cannot be
used to estimate this error.

In the experiment of Alg. 1 for DiscoGAN, which has a large number of sample
points, the cycle from B to A and back to B is significantly correlated with the ground
truth error with very low p-values in four out of five datasets. However, its correlation
is significantly lower than that of our bound.

In Fig. 2, the Facades graph shows a different behavior than the other graphs.
This is because the Facades dataset is inherently ambiguous and presents multiple
possible mappings from A to B. Each mapping satisfies the Occam’s razor property
separately.
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Selecting Architecture using Alg. 2 Next we vary the number of layers of G and
consider its effect on the risk by measuring the bound and the ground truth error
(which cannot be computed in an unsupervised way); A large correlation between
our bound and the ground truth error is observed, see Tab. 1 and Fig. 2, columns 3
and 4. We can therefore optimize the number of layers based on our bound. With a
much smaller number of sample points, the p-values are generally higher than in the
previous experiment.

Beyond correlations, Fig 2 (all four columns), can be used to quantify the gain
from using the two algorithms. The “regret” when using the algorithm is simply the
ground truth error at the minimal value of the bound minus the minimal ground
truth error.

Predicting per-Sample Loss with Alg. 3 Finally, we consider the per sample
loss. The results are reported numerically in Tab. 1 and plotted in Fig. 3, 4. As can
be seen, there is a high degree of correlation between the measured bound and the
ground truth error. Therefore, our method is able to reliably predict the per-sample
success of a multivariate mapping learned in a fully unsupervised manner.

Remarkably, this correlation also seems to hold when considering the time axis,
i.e., we can combine Alg. 1 and Alg. 3 and select the stopping epoch that is best for a
specific sample. Fig. 5 depicts, for three experiments, the bound and the per-sample
loss of G1 over time. In each graph, we plotted the values of the bound and the loss
over time during training of G1. In each column we have the results for four samples
with a specific dataset and method. As can be seen, in the datasets tested, the bound
holds over time. However, the points of a specific dataset seem to follow relatively
similar patterns of improvement in time.

Selecting Architecture with the Modified Hyperband Algorithm Our bound
is used in Sec. 3.3 to create an unsupervised variant of the hyperband method. In
comparison to Alg. 2, this allows for the optimization of multiple hyperparameters at
once, while enjoying the efficient search strategy of the hyperband method.

Fig. 7 demonstrates the applicability of our unsupervised hyperband-based method
for different datasets, employing both DiscoGAN and DistanceGAN. The graphs show
the error and the bound obtained for the selected configuration after up to 35 hy-
perband iterations. As can be seen, in all cases, the method is able to recover a
configuration that is significantly better than what is recovered, when only optimiz-
ing for the number of layers. To further demonstrate the generality of our method,
we applied it on the UNIT [30] architecture. As the runtime of UNIT is much higher
than DiscoGAN and DistanceGAN, this did not allow for extensive experimentation.
We therefore focused on the most useful application of applying hyperband on a rela-
tively complex dataset, specifically Maps. Fig. 6 and Tab. 7(b) show the convergence
on the hyperband method.
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5. Conclusions

We extend the envelope of what is known to be possible in unsupervised learning by
showing that we can reliably predict the error of a cross-domain mapping that was
trained without matching samples. This is true both in expectation, with application
to hyperparameter selection, and per sample, thus supporting dynamic confidence-
based run time behavior, and (future work) unsupervised boosting during training.

The method is based on measuring the maximal distance within the set of low
discrepancy mappings. This measure becomes the bound by applying what we define
as the Occam’s razor property, which is a general form of the Simplicity Principle.
Therefore, the clear empirical success observed in our experiments supports the recent
hypothesis that simplicity plays a key role in unsupervised learning.
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(a)

Dataset Number Batch Learning
Layers Size Rate

DiscoGAN [8]
Shoes2Edges 3 24 0.0008
Bags2Edges 2 59 0.0010
Cityscapes 3 27 0.0009
Facades 3 20 0.0008
Maps 3 20 0.0005

DistanceGAN [14]
Shoes2Edges 3 15 0.0007
Bags2Edges 3 33 0.0007
Cityscapes 4 21 0.0006
Facades 3 8 0.0006
Maps 3 20 0.0005

Dataset #Layers #Res L.Rate

UNIT [30]
Maps 3 1 0.0003

(b)

default unsupervised

parameters hyperband

x G1(x) G1(x)

(c)

Figure 7: Applying unsupervised hyperband for selecting the best configuration. For Disco-
GAN and DistanceGAN we optimize of the number of encoder and decoder layers, batch
size and learning rate while for UNIT, we optmized for the number of encoder and decoder
Layers, number of resnet layers and learning rate. (a) For each dataset, the first plot is
of DiscoGAN and the second is of DistanceGAN. Hyperband optimizes according to the
bound values indicated in blue. The corresponding ground truth errors are shown in or-
ange. Dotted lines represent the best configuration errors, when varying only the number of
layers without hyperband (blue for bound and orange for ground truth error). Each graph
shows the error of the best configuration selected by hyperband as a function the number
of hyperband iterations. (b) The corresponding hyperparameters of the best configuration
as selected by hyperband. (c) Images produced for DiscoGAN’s shoes2edges: 1st column
is the input, the 2nd is the result of DiscoGAN’s default configuration, 3rd is the result of
the configuration selected by our unsupervised Hyperband.
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