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Figure 1. How do you recognize simple actions such as opening book? We argue action
understanding requires appearance modeling but also capturing temporal dynamics
(how shape of book changes) and functional relationships. We propose to represent
videos as space-time region graphs followed by graph convolutions for inference.

Abstract How do humans recognize the action “opening a book”? We
argue that there are two important cues: modeling temporal shape dynam-
ics and modeling functional relationships between humans and objects.
In this paper, we propose to represent videos as space-time region graphs
which capture these two important cues. Our graph nodes are defined by
the object region proposals from different frames in a long range video.
These nodes are connected by two types of relations: (i) similarity rela-
tions capturing the long range dependencies between correlated objects
and (ii) spatial-temporal relations capturing the interactions between
nearby objects. We perform reasoning on this graph representation via
Graph Convolutional Networks. We achieve state-of-the-art results on
both Charades and Something-Something datasets. Especially for Cha-
rades, we obtain a huge 4.4% gain when our model is applied in complex
environments.

1 Introduction

Consider a simple action such as “opening a book” as shown in Fig. 1. When we
humans see the sequence of images, we can easily recognize the action category;
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yet our current vision systems (with hundreds of layers of 3D convolutions)
struggle on this simple task. Why is that? What is missing in current video
recognition frameworks?

Let’s first take a closer look at the sequence shown in Fig. 1. How do humans
recognize the action in the video corresponds to “opening a book”? We argue that
there are two key ingredients to solving this problem: First, the shape of the book
and how it changes over time (i.e., the object state changes from closed to open)
is a crucial cue. Exploiting this cue requires temporally linking book regions
across time and modeling actions as transformations. But just modeling temporal
dynamics of objects is not sufficient. The state of objects change after interaction
with human or other objects. Thus we also need to model human-object and
object-object interactions as well for action recognition.

However, our current deep learning approaches fail to capture these two
key ingredients. For example, the state-of-the-art approaches based on two-
stream ConvNets [1,2] are still learning to classify actions based on individual
video frame or local motion vectors. Local motion clearly fails to model the
dynamics of shape changes. To tackle this limitation, recent work has also
focused on modeling long term temporal information with Recurrent Neural
Networks [3,4,5,6] and 3D Convolutions [7,8,9,10]. However, all these frameworks
focus on the features extracted from the whole scenes and fail to capture long-
range temporal dependencies (transformations) or region-based relationships.
In fact, most of the actions are classified based on the background information
instead of capturing the key objects (e.g., the book in “opening a book”) as
observed in [11].

On the other hand, there have been several efforts to specifically model the
human-object or object-object interactions [12,13]. This direction have been re-
cently revisited with ConvNets in an effort to improve object detection [14,15,16],
visual relationship detection [17] and action recognition [18], etc. However, the
relationship reasoning is still performed in static images failing to capture tem-
poral dynamics of these interactions. Thus, it is very hard for these approaches
to capture the changes of object states over time as well as the causes and effects
of these changes.

In this paper, we propose to perform long-range temporal modeling of human-
object and object-object relationships via a graph-based reasoning framework.
Unlike existing approaches which focus on local motion vectors, our model takes
in a long range video sequence (e.g., more than 100 frames or 5 seconds). We
represent the input video as a space-time region graph where each node in
the graph represent region of interest in the video. Region nodes are connected
by two types of edges: appearance-similarity and spatio-temporal proximity.
Specifically, (i) Similarity Relations: regions which have similar appearance
or semantically related are connected together. With similarity relations, we can
model how the states of the same object change and the long range dependencies
between any two objects in any frames. (ii) Spatial-Temporal Relations:
objects which overlap in space and close in time are connected together via these
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edges. With spatial-temporal relations, we can capture the interactions between
nearby objects as well as the temporal ordering of object state changes.

Given the graph representation, we perform reasoning on the graph and
infer the action by applying the Graph Convolution Networks (GCNs) [19]. We
conduct our experiments in the challenging Charades [20] and 20BN-Something-
Something [21] datasets. Both datasets are extremely challenging as the actions
cannot be easily inferred by the background of the scene and the 2D appearance
of the objects or humans. Our model shows significant improvements over state-
of-the-art results of action recognition. Especially in the Charades dataset, we
obtain 4.4% boost.

Our contributions include: (a) A novel graph representation with variant
relationships between different objects in a long range video; (b) A graph con-
volutional network model for reasoning with multiple relation edges; (c) state-
of-the-art performance with a significant gain in action recognition in complex
environments.

2 Related Work

Video Understanding Models. Spatio-temporal reasoning is one of the core
research areas in the field of video understanding and action recognition. However,
most of the early work has focused on using spatio-temporal appearance features.
For example, a large effort has been spent on manually designing the video fea-
tures [22,23,24,25,26,27,28,29,30,31]. Some of the hand-designed features such as
the Improved Dense Trajectory (IDT) [23] are still widely applied and show very
competitive results in different video related tasks. However, instead of designing
hand-crafted features, recent researches have focused towards learning deep rep-
resentations from the video data [32,1,33,34,35,36,2,37]. One of the most popular
model is the two-Stream ConvNets [1] where temporal information is model by
a network with 10 optical flow frames as inputs (< 1 second). To better model
longer-term information, a lot of work has been focused on using Recurrent Neural
Networks (RNNs) [3,4,38,39,40,5,41,42,43] and 3D ConvNets [44,45,8,9,46,47,48].
However, these frameworks focus on extracting features from the whole scenes
and can hardly model the relationships between different object instances in
space and time.

Visual Relationships. Reasoning about the pairwise relationships has been
proven to be very helpful in a variety of computer vision tasks [12,13,49,50,51].
For example, object detection in cluttered scenes can be significantly improved
by modeling the human-object interactions [13]. Recently, the visual relationships
have been widely applied together with deep networks in the area of visual
question answering [52], object recognition [14,15,16] and intuitive physics [53,54].
In the case of action recognition, a lot of effort has been made on modeling
pairwise human-object and object-object relationships [55,56,57]. However, the
interaction reasoning framework in these efforts focus on static images and the
temporal information is usually modeled by a RNN on image level features. Thus,
these approaches still cannot capture how a certain object state changes or rather
transformations over time.
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An attempt at modeling pairwise relations in space and time has been recently
made in the Non-local Neural Networks [58]. However, the Non-local operator
is applied in every pixel in the feature space (from low layers to higher layers),
while our reasoning is based on a graph with object level features. Moreover, the
non-local operator does not process any temporal ordering information, while
this is explicit modeled in our spatial-temporal relations.

Graphical Models. The long range relationships in images and videos
are usually captured by graphical models. One popular direction is using the
Conditional Random Fields (CRF) [59,60]. In the context of deep learning,
especially for semantic segmentation, the CRF model is often applied on the
outputs of the ConvNets by performing mean-field inference [61,62,63,64,65,66].
Instead of using mean-field inference, variant simpler feedforward graph based
neural network have been proposed recently [67,68,19,69,70,71]. In this paper,
we apply the Graph Convolutional Networks (GCNs) [19] which was originally
proposed for applications in Natural Language Processing. Our GCN is built
by stacking multiple layers of graph convolutions with similarity relations and
spatial-temporal relations. The outputs of the GCNs are updated features for
each object node, which can be used to perform classification.

Our work is also related to video recognition with object cues [72,73,74]
and object graph models [75,76,77,78]. For example, Structural-RNN [77] is
proposed to model the spatial-temporal relations between objects (adjacent in
time) for video recognition tasks. Different from these works, our space-time graph
representation encodes not only local relations but also long range dependencies
between any pairs of objects across space and time. By using graph convolutions
with long range relations, it enables efficient message passing between starting
states and ending states of the objects. This global graph reasoning framework
provides significant boost over the state-of-the-art.

3 Overview

Our goal is to represent the video as a graph of objects and perform reasoning
on the graph for action recognition. The overview of our model is visualized in
Figure 2. Our model takes inputs as a long clip of video frames (more than 5
seconds) and forward them to a 3D Convolutional Neural Network [8,58]. The
output of this 3D ConvNet is a feature map with the dimensions T×H×W ×
d, where T represents the temporal dimension, H ×W represents the spatial
dimensions and d represents the channel number.

Besides extracting the video features, we also apply a Region Proposal Network
(RPN) [79] to extract the object bounding boxes (We have not visualized the RPN
in Figure 2 for simplicity). Given the bounding boxes for each of the T feature
frames, we apply RoIAlign [80,81] to extract the features for each bounding box.
Note that the RoIAlign is applied on each feature frame independently. The
feature vector for each object has d dimensions (first aligned to 7×7×d and then
maxpooled to 1× 1× d). We denote the object number as N, thus the feature
dimension is N× d after RoIAlign.

We now construct a graph which contains N nodes corresponding to N object
proposals aggregated over T frames. There are mainly two types of relations
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Figure 2. Model Overview. Our model uses 3D convolutions to extract visual features
followed by RoIAlign extracting d-dimension feature for each object proposal. These
features are provided as inputs to the Graph Convolutional Network which performs
information propagation based on spatiotemporal edges. Finally, a d-dimension feature is
extracted and appended to another d-dimension video feature to perform classification.

in the graph: similarity relations and spatial-temporal relations. For simplicity,
we decompose this big graph into two sub-graphs with the same nodes but two
different relations: the similarity graph and the spatial-temporal graph.

With the graph representations, we apply the Graph Convolutional Networks
(GCNs) to perform reasoning. The output for the GCNs are in the same dimension
as the input features which is N × d. We perform average pooling over all the
object nodes to obtain a d-dimension feature. Besides the GCN features, we also
perform average pooling on the whole video representation (T×H×W × d) to
obtain the same d-dimension feature as a global feature. These two features are
then concatenated together for video level classification.

We will introduce the details of each component in the following sections. We
introduce the process of feature extraction and graph representations in Section
4 and the Graph Convolutional Networks (GCNs) in Section 5.

4 Graph Representations in Videos

In this section, we will first introduce the feature extraction process for our model
with 3D ConvNets and then describe the construction of the similarity graph as
well as the spatial-temporal graph.

4.1 Video Representation

Video Backbone Model. Given a long clip of video (around 5 seconds), we
sample 32 video frames from it with the same temporal duration between every
two frames. We extract the features on these frames via a 3D ConvNet. Table 1
shows our backbone model based on the ResNet-50 architecture, which are
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layer output size

conv1 5×7×7, 64, stride 1, 2, 2 32×112×112

pool1 1×3×3 max, stride 1, 2, 2 32×56×56

res2

 3×1×1, 64
1×3×3, 64
1×1×1, 256

×3 32×56×56

pool2 3×1×1 max, stride 2, 1, 1 16×56×56

res3

 3×1×1, 128
1×3×3, 128
1×1×1, 512

×4 16×28×28

res4

 3×1×1, 256
1×3×3, 256
1×1×1, 1024

×6 16×14×14

res5

 3×1×1, 512
1×3×3, 512
1×1×1, 2048

×3 16×14×14

global average pool, fc 1×1×1

Table 1. Our baseline ResNet-50 I3D model. We use T×H×W to represent the di-
mensions of filter kernels and 3D output feature maps. For filter kernels, we also have
number of channels following T×H×W. The input is in 32×224×224 dimensions and
the residual blocks are shown in brackets.

motivated by the model architecture mentioned in [58]. The model takes input as
32 video frames with 224×224 dimensions and the output of the last convolutional
layer is a 16× 14× 14 feature map (i.e., 16 frames in the temporal dimension and
14× 14 in the spatial dimension). The baseline method in this paper adopts the
same architecture, and the classification is simply performed by using a global
average pooling on the final convolutional features and then following by a fully
connected layer.

This backbone model is called Inflated 3D ConvNet (I3D) [48,8,58] as one
can turn a 2D ConvNet into a 3D ConvNet by inflating the kernels during
initialization. That is, a 3D kernel with t× k× k dimensions can be inflated from
a 2D k × k kernel by copying the weights t times and rescaling by 1/t. Please
refer to [48,8,58] for more initialization details.

Region Proposal Network. We apply the Region Proposal Network (RPN)
in [79,82] to generate the object bounding boxes of interest on each video frame.
More specifically, we use the RPN with ResNet-50 backbone and FPN [83]. The
RPN is pre-trained with the MSCOCO object detection dataset [84] and there is
no weight sharing between the RPN and our I3D video backbone model. Note
that the bounding boxes extracted by the RPN are class-agnostic.

To extract object features on top of the last convolutional layer, we project
the bounding boxes from the 16 input RGB frames (which are sampled from the
32 input frames for I3D, with the sampling rates of 1 frame every 2 frames) to
the 16 output feature frames. Taking the video features and projected bounding
boxes, we apply RoIAlign [81] to extract the feature for each object proposal.
Note that RoIAlign is similar to RoIPooling [80] which crops and rescales the
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Figure 3. Similarity Graph Gsim. Above figure shows our similarity graph not only
captures similarity in visual space but also correlations (similarity in functional space).
The query box is shown in orange, the nearest neighbors are shown in blue. The
transparent green boxes are the other unselected object proposals.

object features into the same dimensions. In RoIAlign, each output frame is
processed independently. The RoIAlign generates a 7× 7× d output features for
each object which is then max-pooled to 1× 1× d dimensions.

4.2 Similarity Graph

We measure the similarity between objects in the feature space to construct the
similarity graph. In this graph, we connect pairs of semantically related objects
together. More specifically, we will have a high confidence edge between two
instances which are: (i) the same object in different states in different video frames
or (ii) highly correlated for recognizing the actions. Note that the similarity edges
are computed between any pairs of objects.

Formally, assuming we have the features for all the object proposals in the
video as X = {x1,x2, ...,xN}, where N represents the number of object proposals
and each object proposal feature xi is a d dimensional vector. The pairwise
similarity or the affinity between every two proposals can be represented as,

F (xi,xj) = φ(xi)
Tφ′(xj), (1)

where φ and φ′ represents two different transformations of the original features.
More specifically, we have φ(x) = wx and φ′(x) = w′x. The parameters w and
w′ are both d× d dimensions weights which can be learned via back propagation.
By adding the transformation weights w and w′, it allows us to not only learn
the correlations between different states of the same object instance across frame,
but also the relations between different objects. We visualize the top nearest
neighbors for the object proposals in Figure 3. In the first example, we can see
the nearest neighbors of the laptop not only include the other laptop instances
in other frames, but also the human who is operating it.
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Figure 4. Spatial-Temporal Graph Gfront. Highly overlapping object proposals across
neighboring frames are linked by directed edge. We plot some example trajectories with
blue boxes and the direction shows the arrow of time.

After computing the affinity matrix with Eq. 1, we perform normalization
on each row of the matrix so that the sum of all the edge values connected to
one proposal i will be 1. Motivated by the recent works [85,58], we adopt the
softmax function for normalization as,

Gsim
ij =

expF (xi,xj)∑N
j=1 expF (xi,xj)

. (2)

The normalized Gsim is taken as the adjacency matrix representing the
similarity graph.

4.3 Spatial-Temporal Graph

Although the similarity graph captures even the long term dependencies between
any two object proposals, it does not capture the relative spatial relation between
objects and the ordering of the state changes. To encode these spatial and
temporal relations between objects, we propose to use spatial-temporal graphs,
where objects in nearby locations in space and time are connected together.

Given a object proposal in frame t, we calculate the value of Intersection Over
Unions (IoUs) between this object bounding box and all other object bounding
boxes in frame t+ 1. We denote the IoU between object i in frame t and object
j in frame t+ 1 as σij . If σij is larger than 0, we will link object i to object j
using a directed edge i→ j with value σij . After assigning the edge values, we
normalize the graph so that the sum of the edge values connected to proposal i
will be 1 by

Gfront
ij =

σij∑N
j=1 σij

, (3)
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where Gfront is taken as the adjacency matrix for a spatial-temporal graph. We
visualize some of the object proposals and the trajectories in Figure 4.

Besides building the forward graph which connects objects from frame t to
frame t+ 1, we also construct a backward graph in a similar way which connect
objects from frame t + 1 to frame t. We denote the adjacency matrix of this
backward graph as Gback. Specifically, for the overlapping object i in frame t
and object j in frame t+ 1, we construct an edge i← j and assign the values to
Gback

ji according to the IoU values. By building the spatial-temporal graphs in a
bidirectional manner, we can obtain richer structure information and enlarge the
number of propagation neighborhoods during graph convolutions.

5 Convolutions on Graphs

To perform reasoning on the graph, we apply the Graph Convolutional Networks
(GCNs) proposed in [19]. Different from standard convolutions which operates
on a local regular grid, the graph convolutions allow us to compute the response
of a node based on its neighbors defined by the graph relations. Thus performing
graph convolutions is equal to performing message passing inside the graphs. The
outputs of the GCNs are updated features of each object node, which can be
aggregated together for video classification. Formally, we can represent the one
layer of graph convolutions as,

Z = GXW, (4)

where G represents one of the adjacency graph we have introduced (Gsim, Gfront

or Gback) with N × N dimensions, X is the input features of the object nodes
in the graph with N × d dimensions, and W is the weight matrix of the layer
with dimension d× d in our case. Thus the output of one graph convoltuional
layer Z is still in N × d dimensions. The graph convolution operation can be
stacked into multiple layers. After each layer of graph convolutions, we apply
two non-linear functions including the Layer Normalization [86] and then ReLU
before the feature Z is forwarded to the next layer.

Connecting GCN and Non-local Net. We would also like to draw the
connections between the Graph Convolutional Networks with the Similarity
Graph (Gsim) and the recent proposed Non-local Neural Networks [58]. If we
apply the non-local operation on the region proposals, it can be represented as,

Y = Gsimg(X), (5)

where g is a function with a convolutional layer. The non-local block in [58] can
be further formulated as,

Z = YW + X = Gsimg(X)W + X, (6)

which is very similar to the graph convolution operation in Eq. 4. Inspired by this,
we modify the graph convolution operations by adding a convolutional operator
on the input X = g(X) for the first layer (note that Gsim is still computed based
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on the features before applying g). We also add a residual connection in every
layer of GCN, which extends Eq. 4 as,

Z = GXW + X. (7)

Combining Multiple Graphs. To combine multiple graphs in GCNs, we
can simply extend Eq. 7 as,

Z =
∑
i

GiXWi + X, (8)

where Gi indicates different types of graphs, and the weights for different graphs
Wi are not shared. Note that in this way, each hidden layer of the GCN is
updated though the relationships from different graphs. However, we find that
the direct combination of 3 graphs (Gsim, Gfront and Gback) with Eq. 8 actually
hurts the performance compared to the situation with a single similarity graph.

The reason is that our similarity graph Gsim contains learnable parameters
(Eq. 1) and requires back propagation for updating, while the other two graphs do
not require learning. Fusing these graphs together in every GCN layer increases
the optimization difficulties. Thus we create two branches of graph convolutional
networks, and only fuse the results from two GCNs in the end: one GCN adopts
Eq. 4 with Gsim and the other GCN adopts Eq. 8 with Gfront and Gback. These
two branches of GCNs perform convolutions separately for L layers and the final
layer features are summed together, which is in N× d dimensions.

Video Classification. As illustrated in Figure 2, the updated features after
graph convolutions are forwarded to an average pooling layer, which calculates
the mean of all the proposal features and leads to a 1×d dimension representation.
Besides the GCN features, we also perform average pooling on the whole video
level representation and obtain the another 1× d dimensions of global features.
These two features are then concatenated together for video classification. The
classification training loss is defined depending on the tasks (multi-label or single
label classifications).

6 Experiments

We perform the experiments on two recent challenging datasets: Charades [20]
and Something-Something [21]. We first introduce the implementation details of
our approach and then the evaluation results on these datasets.

6.1 Implementation Details

Training. The training of our backbone models involves pre-training on 2 dif-
ferent datasets following [58,8]. The model is first pre-trained as a 2D ConvNet
with the ImageNet dataset [87] and then inflated into a 3D ConvNet (i.e., I3D)
as [8]. We then fine-tuned the 3D ConvNet with the Kinetics action recognition
dataset [88] following the same training scheme for longer sequences (around
5 second video) in [58]. Given this initialization, we now introduce how to
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further fine-tune the network on our target datasets (e.g. Charades or Something-
Something) as following.

As specified in Table 1, our network takes 32 video frames as inputs. These 32
video frames are sampled in the frame rate of 6fps, thus the temporal length of
the video clip is around 5 seconds. The spatial dimensions for input is 224× 224.
Following [89], the input frames are randomly cropped from a randomly scaled
video whose shorter side is sampled in [256, 320] dimensions. To reduce the
number of GCN parameters, we add one more 1× 1× 1 convolutional layer on
top of the I3D baseline model, which reduces the output channel number from
2048 to d = 512. Since both Charades and Something-Something dataset are
in similar scales in number of video frames, we adopt the same learning rate
schedule for both datasets.

Our baseline I3D model is trained with a 4-GPU machine where each GPU
has 2 video clips in a mini-batch. Thus the total batch size is 8 clips during
training. Note that we freeze the parameters in all Batch Normalization (BN)
layers during training. Our model is trained for 100K iterations in total, with
learning rate 0.00125 in the first 90K iterations and it is reduced by a factor of
10 during training the last 10K iterations. Dropout [90] is applied on the last
global pooling layer with a ratio of 0.3.

We set the layer number of our Graph Convolutional Network to 3. The pa-
rameters of the convolutional operations φ, φ′ and g are initialized with Gaussian
distribution having standard deviation of 0.01. The parameters of kernels in
graph convolutions W are initialized as zero inspired by [91]. To train the GCN
together with the I3D backbone, we propose to apply stage-wise training. We
first finetune the I3D model as mentioned above, then we apply RoIAlign and
GCN on top of the final convolutional features as shown in Figure 2. We fix the
I3D features and train the GCN with the same learning rate schedules as for
training the backbone. Then we train the I3D and GCN together end-to-end for
30K more iterations with the reduced learning rate.

Task specific settings. We apply different loss functions when training for
Charades and Something-Something datasets. For Something-Something dataset,
we can simply apply the softmax loss function. For Charades, we apply binary
sigmoid loss, one for each action class, to handle the multi-label property. We also
extract different numbers of object bounding boxes with RPN in two different
datasets. As for Charades, the scenes are more cluttered and we extract 50 object
proposals for each frame. However, for Something-Something, there is usually
only one or two objects in the center of video frame and one hand is interacting
with it. We find that extracting 10 object proposals each frame is enough for the
Something-Something dataset.

Inference. We perform fully-convolutional inference in space as [89,58] during
inference. Note that we rescale the shorter side of each video frame to 256 while
maintaining the aspect ratios. To perform inference on one whole video, we
sample 10 clips for Charades and 2 clips for Something-Something according to
the average video length in two different datasets. Results from multiple clips
are aggregated together by Max-Pooling over the scores.
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model, R50, I3D mAP

baseline 31.8

Proposal+AvgPool 32.1

Spatial-Temporal GCN 34.2

Similarity GCN 35.0

Joint GCN 36.2

(a) We perform ablation studies with GCN
using the ResNet-50, I3D backbone.

model, R50, I3D mAP

baseline 31.8

Non-local 33.5

Joint GCN 36.2

Non-local + Joint GCN 37.5

(b) We first compare our approach with
Non-local Net and then combine Non-local
Net with our model.

Table 2. Ablations on Charades. We show the mean Average Precision (mAP%).

6.2 Experiments on Charades

In the Charades experiments, following the official split, we use the 8K training
videos to train our model and perform testing on the 1.8K validation videos. The
average video duration is around 30 seconds. There are 157 action classes and
multiple actions can happen at the same time.

How much each graph helps? We first perform analysis on each component
of our framework, with the backbone of ResNet-50 I3D, as illustrated in Table 2a.
We first show that the result of I3D baseline without any proposal extractions
and graph convolutions is 31.8% mAP on the validation set.

One simple extension on this baseline is: obtain the region proposals with
RPN, extract the features for each proposal and perform average pooling over
them as an extra feature. We concatenate the video level feature and the proposal
feature together for classification. However, we can only obtain 0.3% boost with
this approach. Thus, a naive aggregation of proposal features does not help much.

We then perform evaluations by applying GCNs with the similarity graph
and the spatial-temporal graph individually. We observe that our GCN model
with only spatial-temporal graph can obtain a boost of 2.4% over the baseline
model and achieve 34.2%. With the similarity graph, we can achieve a better
performance of 35.0%. By combining two graphs together and train GCNs with
multiple relations, our method achieves 36.2% mAP which is a significant boost
of 4.4% over the baseline.

Robustness to Proposal Numbers. Besides studying on each sub-graph, we
also analyze how the number of object proposals generated by the RPN affect our
method. Note that the baseline achieves 31.8% and our method achieves 36.2%
with extracting 50 object proposals per video frame. If we reduce the number of
object proposals and extract 25 proposals per frame, the mAP of our method is
35.9%. If we increase and double the number of object proposals to 100 proposals
per frame, the performance of our method is 36.1% mAP. Thus our approach is
actually very stable with the changes of RPN.

Model Complexity. Given this large improvement in performance, the extra
computation cost of the GCN over the baseline is actually very small. In the
Charades dataset, our graph is defined based on 800 object nodes per video (with
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Figure 5. Error Analysis. We compare our approach against baseline I3D approach
across three different attributes. Our approach improves significantly when action is
part of sequence, involves interaction with objects and has high pose variance.

16 output frames and 50 object proposals per frame). The computations of GCN
with an 800-node graph is very small. The FLOPs of the baseline I3D model is
153× 109 and the total FLOPs of our model (I3D + Joint GCN) is 158× 109.
Thus there is only around 3% increase in FLOPs. In fact, we barely observe
training and inference time difference between baseline and our model.

Comparing to the Non-local Net. One of the related work is the recent
proposed Non-local Neural Networks [58], where they propose to perform non-
local operations on different layers of feature maps for spatial-temporal reasoning.
The comparisons between Non-local Nets and our approach is shown in Table 2b.
We can see that the Non-local operations gives 1.7% improvements over the
baseline and our approach performs 2.7% better than the Non-local Net. We also
show that these two approaches are actually complementary to each other. By
replacing the I3D backbone with Non-local Net, we have another 1.3% boost,
leading to 37.5%.

Error analysis Given this significant improvements, we will also like to find
out in what cases our methods improve over the baselines most. Following the
attributes set up in [11], we show 3 different situations where our approach get
more significant gains over the baselines in Figure 5. More specifically, for each
video in Charades, besides the action class labels, it is also labeled with different
attributes (e.g., whether the actions are happening in a sequence? Is the pose
variant a lot though the actions? Is the action involving objects?).

Part of A Sequence? This attribute specifies whether an action category is
part of a sequence of actions. For example, “holding a cup” and then “sitting
down” are usually in a sequence of actions, while “running” often happens in
isolation. As shown in the left plots in Figure 5, the baseline I3D method fails
dramatically when an action is part of a sequence of actions, while our approach
is more stable. If an action is not happening in isolation, we have actually more
than 5% gain over the baseline.
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model backbone modality mAP

2-Stream [93] VGG16 RGB + flow 18.6

2-Stream +LSTM [93] VGG16 RGB + flow 17.8

Asyn-TF [93] VGG16 RGB + flow 22.4

MultiScale TRN [36] Inception RGB 25.2

I3D [8] Inception RGB 32.9

I3D [58] ResNet-101 RGB 35.5

NL I3D [58] ResNet-101 RGB 37.5

NL I3D + GCN ResNet-50 RGB 37.5

I3D + GCN ResNet-101 RGB 39.1

NL I3D + GCN ResNet-101 RGB 39.7

Table 3. Classification mAP (%) in the Charades dataset [20]. NL is short for Non-
Local.

Pose Variances. This attribute is computed by averaging the Procrustes
distance [92] between any two poses in an action category. If the average distance
is large, it means the poses change a lot in an action. As visualized in the middle
plots in Figure 5, we can see that our approach has similar performance as
the baseline when the pose variance is small. However, the performance of the
baseline drops dramatically again as the variance of pose becomes larger (from
0.68 to 0.73) in the action, while the slope of our curve is much smaller. The
performance of both approaches improve as the pose variability reaches 0.83,
where our approach has around 8% ∼ 9% boost over the baseline.

Involves Objects? This attribute specifies whether an object is involved in
the action. For example, “drinking from a cup” involves the object cup while
“running” does not require interactions with objects. As shown in the right plots
in Figure 5, we can see the baseline perform worse when the actions require
interactions with objects. Interestingly, our approach actually performs slightly
better when objects are involved.

As a short summary, our approach is better in modeling a long term sequence
of actions and actions that require object interactions. Our approach is also more
robust to pose changes and is able to utilize the motion from poses.

Training with a larger backbone. Besides the ResNet-50 backbone archi-
tecture, we also verify our method on a much larger backbone model which is
applied in [58]. This backbone is larger than our baseline in 3 aspects: (i) instead
of using ResNet-50, this backbone is based on the ResNet-101 architecture; (ii)
instead of using 224×224 spatial inputs, this backbone takes in 288×288 images;
(iii) instead of sampling 32 frames with 6fps, this backbone performs sampling
more densely by using 128 frames with 24fps as inputs. Note that the temporal
output dimension of both our baseline model and this ResNet-101 backbone
are still the same (16 dimensions). With all the modifications on the backbone
architecture, the FLOPs are 3 times as many as our ResNet-50 baseline model.

We show the results together with all the state-of-the-art methods in Table 3.
The Non-local Net [58] with ResNet-101 backbone achieves the mAP of 37.5%.
We can actually obtain the same performance with our method by using a much
smaller ResNet-50 backbone (with around 1/3 FLOPs). By applying our method
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val test

model backbone top-1 top-5 top-1

C3D [21] C3D[7] - - 27.2

MultiScale TRN [36] Inception 34.4 63.2 33.6

I3D ResNet-50 41.6 72.2 -

I3D + Spatial-Temporal GCN ResNet-50 42.8 74.7 -

I3D + Similarity GCN ResNet-50 42.7 74.6 -

I3D + Joint GCN ResNet-50 43.3 75.1 -

NL I3D ResNet-50 44.4 76.0 -

NL I3D + Joint GCN ResNet-50 46.1 76.8 45.0

Table 4. Classification accuracy (%) in the Something-Something dataset [21]. NL
is short for Non-Local.

with the ResNet-101 backbone, our method (I3D+GCN) can still give 3.6%
improvements and reaches 39.1%. This is another evidence showing that our
method is modeling very different things from just increasing the spatial inputs
and the depth of the ConvNets. By combining the non-local operation together
with our approach, we obtain the final performance of 39.7%.

6.3 Experiments on Something-Something

In the Something-Something dataset, there are 86K training videos, around 12K
validation videos and 11K testing videos. Each video has the duration ranging
from 3 seconds to 6 seconds. The total number of classes is 174.

The data in the Something-Something dataset is very different from the
Charades dataset. In the Charades dataset, most of the actions are performed
by agents in a cluttered indoor scenes. However, in the Something-Something
dataset, all videos are object centric and there is usually only one or two hands
interacting with the center objects. The background in the Something-Something
dataset is also very clean in most cases.

We report our results in Table 4. The evaluations are performed on both
validation set and testing set. The baseline I3D approach achieves 41.6% in
top-1 accuracy and 72.2% in top-5 accuracy. By applying our method with the
I3D backbone (I3D + Joint GCN), we achieve 1.7% improvements in the top-1
accuracy. We observe that the improvement of top-1 accuracy here is not as
huge as the gains we have in the Charades dataset. The reason is mainly because
the videos are already well calibrated with objects in the center of the frames.
But interestingly, we still have a relative larger boost 2.9% on the top-5 metric
compared to the top-1 metric. We have also studied the performance of each
sub-graph. If we only use spatial-temporal graph we obtain 42.8% top-1 accuracy.
With only similarity graph, we obtain 42.7% accuracy.

We have also combined our method with the Non-local Net. As shown in
Table 4, the Non-local I3D method achieves 44.4% in top-1 accuracy. By combining
our approach with the Non-local Net, we achieve another 1.7% gain in top-1
accuracy, which leads to the state-of-the-art results 46.1%. We also test our final
model on the test set by submitting to the official website. By using a single
RGB model, we achieve the best result 45.0% in the leaderboard.
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7 Conclusions

We propose a novel graph based network to model the long range relationships
in videos for action recognition. Large performance gain over state-of-the-art
demonstrate the effectiveness of our framework. But more importantly, our error
analysis shows how our model is doing better in capturing the object interactions,
pose changes and actions in a sequence. This shows that our model has a large
potential in not only video classification, but also variant tasks including detection
and tracking in videos.
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