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Abstract. State-of-the-art human pose estimation methods are based
on heat map representation. In spite of the good performance, the rep-
resentation has a few issues in nature, such as non-differentiable post-
processing and quantization error. This work shows that a simple integral
operation relates and unifies the heat map representation and joint re-
gression, thus avoiding the above issues. It is differentiable, efficient, and
compatible with any heat map based methods. Its effectiveness is con-
vincingly validated via comprehensive ablation experiments under vari-
ous settings, specifically on 3D pose estimation, for the first time.

Keywords: Integral regression · Human pose estimation · Deep learn-
ing.

1 Introduction

Human pose estimation has been extensively studied [24,3,28]. Recent years have
seen significant progress on the problem, using deep convolutional neural net-
works (CNNs). Best performing methods on 2D pose estimation are all detection
based [2]. They generate a likelihood heat map for each joint and locate the joint
as the point with the maximum likelihood in the map. The heat maps are also
extended for 3D pose estimation and shown promising [37].

Despite its good performance, a heat map representation bears a few draw-
backs in nature. The “taking-maximum” operation is not differentiable and pre-
vents training from being end-to-end. A heat map has lower resolution than that
of input image due to the down sampling steps in a deep neural network. This
causes inevitable quantization errors. Using image and heat map with higher res-
olution helps to increase accuracy but is computational and storage demanding,
especially for 3D heat maps.

From another viewpoint, pose estimation is essentially a regression prob-
lem. A regression approach performs end-to-end learning and produces contin-
uous output. It avoids the issues above. However, regression methods are not
as effective as well as detection based methods for 2D human pose estimation.
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Among the best-performing methods in the 2D pose benchmark [2], only one
method [7] is regression based. A possible reason is that regression learning is
more difficult than heat map learning, because the latter is supervised by dense
pixel information. While regression methods are widely used for 3D pose esti-
mation [42,55,56,31,32,30,35,43,21,14], its performance is still not satisfactory.

Existing works are either detection based or regression based. There is clear
discrepancy between the two categories and there is little work studying their
relation. This work shows that a simple operation would relate and unify the
heat map representation and joint regression. It modifies the “taking-maximum”
operation to “taking-expectation”. The joint is estimated as the integration of
all locations in the heat map, weighted by their probabilities (normalized from
likelihoods). We call this approach integral regression. It shares the merits of
both heat map representation and regression approaches, while avoiding their
drawbacks. The integral function is differentiable and allows end-to-end training.
It is simple and brings little overhead in computation and storage. Moreover, it
can be easily combined with any heat map based methods.

The integral operation itself is not new. It has been known as soft-argmax and
used in the previous works [27,52,45]. Specifically, two contemporary works [29,34]
also apply it for human pose estimation. Nevertheless, these works have limited
ablation experiments. The effectiveness of integral regression is not fully eval-
uated. Specifically, they only perform experiments on MPII 2D benchmark, on
which the performance is nearly saturated. It is yet unclear whether the approach
is effective under other settings, such as 3D pose estimation. See Section 3 for
more discussions.

Because the integral regression is parameter free and only transforms the
pose representation from a heat map to a joint, it does not affect other algo-
rithm design choices and can be combined with any of them, including different
tasks, heat map and joint losses, network architectures, image and heat map
resolutions. See Figure 1 for a summarization. We conduct comprehensive ex-
periments to investigate the performance of integral regression under all such
settings and find consistent improvement. Such results verify the effectiveness of
integral representation.

Our main contribution is applying integral regression under various exper-
iment settings and verifying its effectiveness. Specifically, we firstly show that
integral regression significantly improves the 3D pose estimation, enables the
mixed usage of 3D and 2D data, and achieves state-of-the-art results on Hu-
man3.6M [24]. Our results on 2D pose benchmarks (MPII [3] and COCO [28])
is also competitive. Code4 will be released to facilitate future work.

2 Integral Pose Regression

Given a learnt heat map Hk for kth joint, each location in the map represents
the probability of the location being the joint. The final joint location coordinate

4 https://github.com/JimmySuen/integral-human-pose
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Fig. 1. Overview of pose estimation pipeline and all our ablation experiment settings.

Jk is obtained as the location p with the maximum likelihood as

Jk = arg max
p

Hk(p). (1)

This approach has two main drawbacks. First, Eq. (1) is non-differentiable,
reducing itself to a post-processing step but not a component of learning. The
training is not end-to-end. The supervision could only be imposed on the heat
maps for learning.

Second, the heat map representation leads to quantization error. The heat
map resolution is much lower than the input image resolution due to the down
sampling steps in a deep neural network. The joint localization precision is thus
limited by the quantization factor, which poses challenges for accurate joint
localization. Using larger heat maps could alleviate this problem, but at the cost
of extra storage and computation.

Regression methods have two clear advantages over heat map based methods.
First, learning is end-to-end and driven by the goal of joint prediction, bridging
the common gap between learning and inference. Second, the output is contin-
uous and up to arbitrary localization accuracy, in principle. This is opposed to
the quantization problem in heat maps.

We present a unified approach that transforms the heat map into joint lo-
cation coordinate and fundamentally narrows down the gap between heat map
and regression based method. It brings principled and practical benefits.

Our approach simply modifies the max operation in Eq. (1) to take expec-
tation, as

Jk =

∫
p∈Ω

p · H̃k(p). (2)

Here, H̃k is the normalized heat map and Ω is its domain. The estimated joint
is the integration of all locations p in the domain, weighted by their probabilities.

Normalization is to make all elements of H̃k(p) non-negative and sum to one.
[34] has already discussed it and we use softmax in this paper as

H̃k(p) =
eHk(p)∫

q∈Ω e
Hk(q)

. (3)
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The discrete form of Eq. (2) is

Jk =

D∑
pz=1

H∑
py=1

W∑
px=1

p · H̃k(p), (4)

By default, the heat map is 3D. Its resolution on depth, height, and width
are denoted as D,H, and W respectively. D = 1 for 2D heat maps.

In this way, any heat map based approach can be augmented for joint esti-
mation by appending the integral function in Eq. (4) to the heat map Hk and
adopting a regression loss for Jk. We call this approach integral pose regression.

Integral pose regression shares all the merits of both heat map based and
regression approaches. The integral function in Eq. (4) is differentiable and al-
lows end-to-end training. It is simple, fast and non-parametric. It can be easily
combined with any heat map based methods, while adding negligible overhead
in computation and memory for either training or inference. Its underlying heat
map representation makes it easy to train. It has continuous output and does
not suffer from the quantization problem.

2.1 Joint 3D and 2D training

A lack of diverse training data is a severe problem for 3D human pose estimation.
Several efforts have been made to combine 3D and 2D training [55,31,43,51,41].
Since integral regression provides a unified setting for both 2D and 3D pose
estimation, it is a simple and general solution to facilitate joint 3D and 2D
training so as to address this data issue in 3D human pose estimation.

Recently, Sun et al. [42] introduce a simple yet effective way to mix 2D and
3D data for 3D human pose estimation and show tremendous improvement. The
key is to separate the 2D part (xy) of the joint prediction Jk from the depth
part (z) so that the xy part can be supervised by the abundant 2D data.

Integral regression can naturally adopt this mixed training technique, thanks
to the differentiability of integral operation in Eq. (4). We also obtain enormous
improvement from this technique in our experiments and this improvement is
feasible due to the integral formulation.

However, the underlying 3D heat map still can not be supervised by the
abundant 2D data. To address this problem, we further decompose the integral
function Eq. (4) into a two-step version to generate separate x, y, z heat map
target. For example, for the x target, we first integrate the 3D heat map into 1D
x heat vectors Eq. (5)

Ṽx
k =

D∑
pz=1

H∑
py=1

H̃k(p), (5)

and then, further integrate the 1D x heat vector into x joint coordinate Eq. (6)

Jxk =

W∑
px=1

p · Ṽk(p). (6)
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Corresponding y and z formulation should be easy to infer. In this way, the
x, y, z targets are separated at the first step, allowing the 2D and 3D mixed data
training strategy. We obtain significant improvements from both direct and two-
step integral regression for 3D pose estimation.

3 Methodology for Comprehensive Experiment

The main contribution of this work is a comprehensive methodology for ablation
experiments to evaluate the performance of the integral regression under various
conditions. Figure 1 illustrates the overview of the framework and the decision
choices at each stage.

The related works [29,34] only experimented with 2D pose estimation on
MPII benchmark [2]. They also have limited ablation experiments. Specifically,
[29] provides only system-level comparison results without any ablation experi-
ments. [34] studies the heat map normalization methods, heat map regularization
and backbone networks, which is far less comprehensive than ours.

Tasks. Our approach is general and is ready for both 2D and 3D pose estimation
tasks, indistinguishably. Consistent improvements are obtained from both tasks.
Particularly, 2D and 3D data can be easily mixed simultaneously in the training.
The 3D task benefits more from this technique and outperforms previous works
by large margins.

Network Architecture. We use a simple network architecture that is widely
adopted in other vision tasks such as object detection and segmentation [20,19].
It consists of a deep convolutional backbone network to extract convolutional
features from the input image, and a shallow head network to estimate the
target output (heat maps or joints) from the features.

In the experiment, we show that our approach is a flexible component which
can be easily embedded into various backbone networks and the result is less
affected by the network capacity than the heat map. Specifically, network designs
ResNet [20] and HourGlass [33], network depth ResNet18, 50, 101 [20], multi-
stage design [49,7] are investigated.

Heat Map Losses. In the literature, there are several choices of loss function
for heat maps. The most widely adopted is mean squared error (or L2 distance)
between the predicted heat map and ground-truth heat map with a 2D Gaussian
blob centered on the ground truth joint location [48,49,6,33,10,12,13,5]. In this
work, the Gaussian blob has standard deviation σ = 1 as in [33]. Our baseline
with this loss is denoted as H1 (H for heat map).

The recent Mask RCNN work [19] uses a one-hot m×m ground truth mask
where only a single location is labeled as joint. It uses the cross-entropy loss over
an m2-way softmax output. Our baseline with this loss is denoted as H2.

Another line of works [38,22,36] solve a per-pixel binary classification prob-
lem, thus using binary cross-entropy loss. Each location in each heat map is
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classified as a joint or not. Following [38,22], the ground truth heat map for each
joint is constructed by assigning a positive label 1 at each location within 15
pixels to the ground truth joint, and negative label 0 otherwise. Our baseline
with this implementation is denoted as H3.

In the experiment, we show that our approach works well with any of these
heat map losses. Though, these manually designed heat map losses might have
different performances on different tasks and need careful network hyper-parameter
tuning individually, the integral version (I1, I2, I3) of them would get prominent
improvement and produce consistent results.

Heat Map and Joint Loss Combination. For the joint coordinate loss, we
experimented with both L1 and L2 distances between the predicted joints and
ground truth joints as loss functions. We found that L1 loss works consistently
better than L2 loss. We thus adopt L1 loss in all of our experiments.

Note that our integral regression can be trained with or without intermediate
heat map losses. For the latter case, a variant of integral regression method is
defined, denoted as I*. The network is the same, but the loss on heat maps is
not used. The training supervision signal is only on joint, not on heat maps. In
the experiment, we find that integral regression works well with or without heat
map supervisions. The best performance depends on specific tasks. For example,
for 2D task I1 obtains the best performance, while for 3D task I* obtains the
best performance.

Image and Heat Map Resolutions. Due to the quantization error of heat
map, high image and heat map resolutions are usually required for high localiza-
tion accuracy. However, it is demanding for memory and computation especially
for 3D heat map. In the experiment, we show that our approach is more robust
to the image and heat map resolution variation. This makes it a better choice
when the computational capabilities are restricted, in practical scenarios.

4 Datasets and Evaluation Metrics

Our approach is validated on three benchmark datasets.
Human3.6M [24] is the largest 3D human pose benchmark. The dataset is

captured in controlled environment. It consists of 3.6 millions of video frames.
11 subjects (5 females and 6 males) are captured from 4 camera viewpoints, per-
forming 15 activities. The image appearance of the subjects and the background
is simple. Accurate 3D human joint locations are obtained from motion capture
devices. For evaluation, many previous works [8,46,32,54,25,31,37,51,41,4,53,44,56]
use the mean per joint position error (MPJPE ). Some works [51,41,8,4,32,54]
firstly align the predicted 3D pose and ground truth 3D pose with a rigid trans-
formation using Procrustes Analysis [18] and then compute MPJPE. We call
this metric PA MPJPE.

MPII [3] is the benchmark dataset for single person 2D pose estimation.
The images were collected from YouTube videos, covering daily human activi-
ties with complex poses and image appearances. There are about 25k images. In
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total, about 29k annotated poses are for training and another 7k are for testing.
For evaluation, Percentage of Correct Keypoints (PCK) metric is used. An esti-
mated keypoint is considered correct if its distance from ground truth keypoint
is less than a fraction α of the head segment length. The metric is denoted as
PCKh@α. Commonly, PCKh@0.5 metric is used for the benchmark [2]. In order
to evaluate under high localization accuracy, which is also the strength of regres-
sion methods, we also use PCKh@0.1 and AUC (area under curve, the averaged
PCKh when α varies from 0 to 0.5) metrics.

The COCO Keypoint Challenge [28] requires “in the wild” multi-person de-
tection and pose estimation in challenging, uncontrolled conditions. The COCO
train, validation, and test sets, containing more than 200k images and 250k
person instances labeled with keypoints. 150k instances of them are publicly
available for training and validation. The COCO evaluation defines the object
keypoint similarity (OKS) and uses the mean average precision (AP) over 10
OKS thresholds as main competition metric [1]. The OKS plays the same role as
the IoU in object detection. It is calculated from the distance between predicted
points and ground truth points normalized by the scale of the person.

5 Experiments

Training Our training and network architecture is similar for all the three
datasets. ResNet [20] and HourGlass [33] (ResNet and HourGlass on Human3.6M
and MPII, ResNet-101 on COCO) are adopted as the backbone network. ResNet
is pre-trained on ImageNet classification dataset [16]. HourGlass is trained from
scratch. Normal distribution with 1e-3 standard deviation is used to initialize
the HourGlass and head network parameters.

The head network for heat map is fully convolutional. It firstly use deconvo-
lution layers (4×4 kernel, stride 2) to upsample the feature map to the required
resolution (64 × 64 by default). The number of output channels is fixed to 256
as in [19]. Then, a 1 × 1 conv layer is used to produce K heat maps. Both heat
map baseline and our integral regression are based on this head network.

We also implement a most widely used regression head network as a regression
baseline for comparison. Following [7,42,55,56], first an average pooling layer
reduces the spatial dimensionality of the convolutional features. Then, a fully
connected layer outputs 3K(2K) joint coordinates. We denote our regression
baseline as R1 (R for regression).

We use a simple multi-stage implementation based on ResNet-50, the features
from conv3 block are shared as input to all stages. Each stage then concatenates
this feature with the heat maps from the previous stage, and passes through the
conv4 and conv5 blocks to generate its own deep feature. The heat map head
is then appended to output heat maps, supervised with the ground truth and
losses. Depending on the loss function used on the heat map, this multi-stage
baseline is denoted as MS-H1(2,3).

MxNet [9] is used for implementation. Adam is used for optimization. The
input image is normalized to 256 × 256. Data augmentation includes random
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translation(±2% of the image size), scale(±25%), rotation(±30 degrees) and
flip. In all experiments, the base learning rate is 1e-3. It drops to 1e-5 when the
loss on the validation set saturates. Each method is trained with enough number
of iterations until performance on validation set saturates. Mini-batch size is 128.
Four GPUs are used. Batch-normalization [23] is used. Other training details
are provided in individual experiments.

For integral regression methods (I1, I2, I3, and their multi-stage versions),
the network is pre-trained only using heat map loss (thus their H versions) and
then, only integral loss is used. We found this training strategy working slightly
better than training from scratch using both losses.

5.1 Experiments on MPII

Since the annotation on MPII test set is not available, all our ablation studies
are evaluated on an about 3k validation set which is separated out from the
training set, following previous common practice [33]. Training is performed on
the remaining training data.

Table 1. Comparison between methods using heat
maps, direct regression, and integral regression on MPII
validation set. Backbone network is ResNet-50. The per-
formance gain is shown in the subscript

Metric R1 H1 H2 H3 I* I1 I2 I3
@0.5 84.6 86.8 86.4 83.0 86.0↑1.4 87.3↑0.5 86.9↑0.5 86.6↑3.6
@0.1 25.0 17.2 17.6 12.6 28.3↑3.3 29.3↑12.1 29.7↑12.1 29.1↑16.5
AUC 54.1 52.9 53.1 46.3 56.6↑2.5 58.3↑5.4 58.3↑5.2 57.7↑11.4 Fig. 2. Curves of PCKh@α

of different methods while α
varies from 0 to 0.5.

Effect of integral regression Table 1 presents a comprehensive comparison.
We first note that all integral regression methods (I1, I2, I3) clearly outperform
their heat map based counterpart (H1, H2, H3). The improvement is especially
significant on PCKh@0.1 with high localization accuracy requirement. For exam-
ple, the improvement of I1 to H1 is +0.5 on PCKh@0.5, but +12.1 on PCKh@0.1.
The overall improvement on AUC is significant (+5.4). Among the three heat
map based methods, H3 performs the worst. After using integral regression (I3),
it is greatly improved, eg., AUC from 46.3 to 57.7 (+11.4). Such results show that
joint training of heat maps and joint is effective. The significant improvement
on localization accuracy (PCKh@0.1 metric) is attributed to the joint regression
representation.

Surprisingly, I* performs quite well. It is only slightly worse than I1/I2/I3
methods. It outperforms H1/H2/H3 on PCKh@0.1 and AUC, thanks to its re-
gression representation. It outperforms R1, indicating that integral regression is
better than direct regression, as both methods use exactly the same supervision
and almost the same network (actually R1 has more parameters).
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Ground Truth R1 H1 I1 Ground Truth R1 H1 I1

Fig. 3. Example results of regression baseline (R1), detection baseline (H1) and integral
regression (I1).

From the above comparison, we can draw two conclusions. First, integral re-
gression using an underlying heat map representation is effective (I*>H, I*>R).
It works even without supervision on the heat map. Second, joint training of heat
maps and joint coordinate prediction combines the benefits of two paradigms and
works best (I>H,R,I*).

As H3 is consistently worse than the other two and hard to implement for 3D,
it is discarded in the remaining experiments. As H1 and I1 perform best in 2D
pose, they are used in the remaining 2D (MPII and COCO) experiments. Figure 2
further shows the PCKh curves of H1, R1, I* and I1 for better illustration.

Figure 3 shows some example results. Regression prediction (R1) is usually
not well aligned with local image features like corners or edges. On the contrary,
detection prediction (H1) is well aligned with image feature but hard to distin-
guish locally similar patches, getting trapped into local maximum easily. Integral
regression (H1) shares the merits of both heat map representation and joint re-
gression approaches. It effectively and consistently improves both baselines.

Effect of resolution Table 2 compares the results using two input image sizes
and two output heat map sizes.

Not surprisingly, using large image size and heat map size obtains better
accuracy, under all cases. However, integral regression (I1) is much less affected
by the resolution than heat map based method (H1). It is thus a favorable choice
when computational complexity is crucial and a small resolution is in demand.

For example, when heat map is downsized by half on image size 256 (a to
b), 1.1 G FLOPs (relative 15%) is saved. I1 only drops 0.6 in AUC while H1
drops 4.8. This gap is more significant on image size 128 (c to d). 0.3G FLOPs
(relative 17%) is saved. I1 only drops 3.5 in AUC while H1 drops 12.5.

When image is downsized by half (b to d), 4.7 G FLOPs is saved (relative
76%). I1 only drops 11.1 in AUC while H1 drops 18.8.

Thus, we conclude that integral regression significantly alleviates the problems
of quantization error or needs of large resolution in heat map based methods.

Effect of network capacity Table 3 shows results using different backbones
on two methods. While all methods are improved using a network with large
capacity, integral regression I1 keeps outperforming heat map based method H1.
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Table 2. For two methods (H1/I1), two input image→feature map (f) resolutions, and
two heat map sizes (using either 3 or 2 upsampling layers), the performance metric
(mAP@0.5, map@0.1, AUC), the computation (in FLOPs) and the amount of network
parameters. Note that setting (b) is used in all other experiments

Size ×2,×2,×2 ×2,×2 Size ×2,×2,×2 ×2,×2

256→ 8 (a)→ 16→ 32→ 64 (b)→ 16→ 32 128→ 4 (c)→ 8→ 16→ 32 (d)→ 8→ 16

H1 86.7/28.0/57.7 86.8/17.2/52.9 81.6/13.6/46.6 75.4/5.6 /34.1
I1 86.6/32.1/58.9 87.3/29.3/58.3 83.2/20.6/50.7 80.9/16.1/47.2

FLOPs 7.3G 6.2G 1.8G 1.5G
params 26M 26M 26M 26M

Table 5. Comparison to state-of-the-art works on MPII

Method Tompson Raf Wei Bulat Newell Yang Ours
(Heat map based) [47] [39] [49] [5] [33] [50] H1 MS-H1 HG-H1

Mean (PCKh@0.5) 82.0 86.3 88.5 89.7 90.9 92.0 89.4 89.8 90.4

Method (Regression) Carreira [7] Sun [42] R1 (Ours) I1 MS-I1 HG-I1

Mean (PCKh@0.5) 81.3 86.4 87.0 90.0 90.7 91.0

While a large network improves accuracy, a high complexity is also intro-
duced. Integral regression I1 using ResNet-18 already achieves accuracy com-
parable with H1 using ResNet-101. This makes it a better choice when a small
network is in favor, in practical scenarios.

Table 3. PCKh@0.5, PCKh@0.1 and AUC metrics
(top) of three methods, and model complexity (bot-
tom) of three backbone networks. Note that ResNet-
50 is used in all other experiments

ResNet-18 ResNet-50 ResNet-101
H1 85.5/15.7/50.8 86.8/17.2/52.9 87.3/17.3/53.3
I1 86.0/25.7/55.6 87.3/29.3/58.3 87.9/30.3/59.0
FLOPs 2.8G 6.2G 11.0G
params 12M 26M 45M

Table 4. PCKh@0.5, PCKh@0.1
and AUC metrics of a multi-stage
network with and without integral
regression
stage MS-H1 MS-I1
1 86.8/17.2/52.9 87.3/29.3/58.3
2 86.9/17.6/53.4 87.7/32.0/59.5
3 87.1/17.8/53.7 87.8/32.4/59.9
4 87.4/17.8/54.0 88.1/32.3/60.1

Effect in multi-stage Table 4 shows the results of our multi-stage implementa-
tion with or without using integral regression. There are two conclusions. First,
integral regression can be effectively combined with a multi-stage architecture
and performance improves as stage increases. Second, integral regression outper-
forms its heat map based counterpart on all stages. Specifically, MS-I1 stage-2
result 87.7 is already better than MS-H1 state-4 result 87.4.

Conclusions From the above ablation studies, we can conclude that effec-
tiveness of integral regression is attributed to its representation. It works under
different heat map losses (H1, H2, H3), different training (joint or not), different
resolution, and different network architectures (depth or multi-stage). Consis-
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Table 6. COCO test-dev results

backbone AP kp AP kp
50 AP kp

75 AP kp
M AP kp

L

CMU-Pose [6] 61.8 84.9 67.5 57.1 68.2
Mask R-CNN [19] ResNet-50-FPN 63.1 87.3 68.7 57.8 71.4
G-RMI [36] ResNet-101(353× 257) 64.9 85.5 71.3 62.3 70.0

Ours: H1 ResNet-101(256× 256) 66.3 88.4 74.6 62.9 72.1
Ours: I1 ResNet-101(256× 256) 67.8 88.2 74.8 63.9 74.0

tent yet even stronger conclusions can also be derived from COCO benchmark
in Section 5.2 and 3D pose benchmarks in Section 5.3.

Result on the MPII test benchmark Table. 5 summarizes the results of our
methods, as well as state-of-the-art methods. In these experiments, our training
is performed on all 29k training samples. We also adopt the flip test trick as used
in [33]. Increasing the training data and using flip test would increase about 2.5
mAP@0.5 from validation dataset to test dataset.

We first note that our baselines have good performance, indicating they are
valid and strong baselines. H1 and MS-H1 in the heat map based section has 89.4
and 89.8 PCKh, respectively, already comparable to many multi-stage methods
that are usually much more complex. R1 in regression section is already the best
performing regression method.

Our integral regression further improves both baselines (I1>H1, MS-I1>MS-
H1, 4 stages used) and achieves results competitive with other methods.

We also re-implement the HourGlass architecture [33], denoted as HG-H1.
Consistent improvement is observed using integral regression HG-I1. While the
accuracy of our approach is slightly below the state-of-the-art, we point out that
the recent leading approaches [13,12,10,50] are all quite complex, making direct
and fair comparison with these works difficult. Integral regression is simple, ef-
fective and can be combined with most other heat map based approaches, as
validated in our baseline multi-stage and the HourGlass experiments. Combina-
tion with these approaches is left as future work.

5.2 Experiments on COCO

Person box detection We follow a two-stage top-down paradigm similar as
in [36]. For human detection, we use Faster-RCNN [40] equipped with deformable
convolution [15]. We uses Xception [11] as the backbone network. The box de-
tection AP on COCO test-dev is 0.49. For reference, this number in [36] is 0.487.
Thus, the person detection performance is similar.

Following [36], we use the keypoint-based Non-Maximum-Suppression (NMS)
mechanism building directly on the OKS metric to avoid duplicate pose detec-
tions. We also use the pose rescoring technique [36] to compute a refined instance
confidence estimation that takes the keypoint heat map score into account.
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Pose estimation We experimented with heat map based method (H1) and our
integral regression methods (I1). All settings are the same as experiments on
MPII, except that we use ResNet-101 as our backbone and use 3 deconvolution
layers (4 × 4 kernel, stride 2) to upsample the feature maps.

Results Table 6 summarizes the results of our methods, as well as state-of-
the-art on COCO test-dev dataset. Our experiments are performed on COCO
training data, no extra data is added. The baseline model (H1) is a one-stage
ResNet-101 architecture. Our baseline model H1 is already superior to the state
of the art top-down method [36]. Our integral regression further increases AP kp

by 1.5 points and achieves the state-of-the-art result.

5.3 Experiments on Human3.6M

In the literature, there are two widely used evaluation protocols. They have
different training and testing data split.

Protocol 1 Six subjects (S1, S5, S6, S7, S8, S9) are used in training. Evalu-
ation is performed on every 64th frame of Subject 11. PA MPJPE is used for
evaluation.

Protocol 2 Five subjects (S1, S5, S6, S7, S8) are used in training. Evaluation
is performed on every 64th frame of subjects (S9, S11). MPJPE is used for
evaluation.

Two training strategies are used on whether use extra 2D data or not. Strategy
1 only use Human3.6M data for training. For integral regression, we use Eq. (4).
Strategy 2 mix Human3.6M and MPII data for training, each mini-batch consists
of half 2D and half 3D samples, randomly sampled and shuffled. In this strategy,
we use the two-step integral function Eq. (5) (6) so that we can add 2D data on
both heat map and joint losses for training as explained in Section 2.1.

Effect of integral regression Table. 7 compares the integral regression (I*,I1,I2)
with corresponding baselines (R1, H1,H2) under two training strategies. Protocol
2 is used. Backbone is ResNet50. We observe several conclusions.

First, integral regression significantly improves the baselines in both training
strategies. Specifically, without using extra 2D data, the integral regression (I*,
I1, I2) improves (R1, H1, H2) by 6.0%, 13.2%, 17.7% respectively. I2 outperforms
all previous works in this setting. When using extra 2D data, the baselines have
already achieved very competitive results. Integral regression further improves
them by 11.7%, 17.1%, 11.6%, respectively. I* achieves the new state-of-the-art in
this setting and outperforms previous works by large margins, see Table. 10(B).
Second, all methods are significantly improved after using MPII data. This is
feasible because of integral formulation Eq. (5)(6) generates x, y, z predictions
individually and keep differentiable.

Effect of backbone network [37] is the only previous work using 3D heat map
representation. They use a different backbone network, multi-stage HourGlass.
In Table. 8, we follow exactly the same practice as in [37] for a fair comparison



Integral Human Pose Regression 13

Table 7. Comparison between methods using heat maps, direct regression, and inte-
gral regression. Protocol 2 is used. Two training strategies are investigated. Backbone
network is ResNet-50. The relative performance gain is shown in the subscript

Training Data Strategy R1 H1 H2 I* I1 I2

Strategy1 106.6 99.5 80.4 100.2↓6.0% 86.4↓13.2% 66.2↓17.7%
Strategy2 56.2 63.6 59.3 49.6↓11.7% 52.7↓17.1% 52.4↓11.6%

Table 8. Comparison with Coarse-to-Fine Volumetric Prediction [37] trained only
on Human3.6M. Protocol 2 is used. Evaluation metric is MPJPE. di denotes the z-
dimension resolution for the supervision provided at the i-th hourglass component.
Our I1 wins at both stages

Network Architecture (HourGlass [33]) Coarse-to-Fine. [37] Ours H1 Ours I1

One Stage (d = 64) 85.8 85.5 78.7

Two Stage (d1 = 1, d2 = 64) 69.8 68.0 64.1

using this backbone network. Only Human3.6M data is used for training and
Protocol 2 is used for evaluation.

We have several observations. First, our baseline implementation H1 is strong
enough that is already better than [37] at both stages. Therefore, it serves as a
competitive reference. Second, our integral regression I1 further improves H1 at
both stages by 6.8mm (relative 8.0%) at stage 1 and 3.9mm (relative 5.7%) at
stage 2. We can conclude that the integral regression also works effectively with
HourGlass and multi-stage backbone on the 3D pose problem and our two-stage
I1 sets the new state-of-the-art in this setting, see Table. 11.

Effect of resolution Table. 9 investigates the effect of input image and heat
map resolution on 3D problem. We can also have similar conclusions as in Ta-
ble. 2. Integral regression (I2) is much less affected by the resolution than heat
map based method (H2). It is thus a favorable choice when computational com-
plexity is crucial and a small resolution is in demand.

For example, when heat map is downsized by half on image size 256 (a to b).
I2 even gets slightly better while H2 drops 2.2mm on MPJPE. This gap is more
significant on image size 128 (c to d). I2 only drops 3.8mm in MPJPE while
H2 drops 19.8mm. When image is downsized by half (b to d). I2 only drops in
9.2mm on MPJPE while H2 drops 24.9mm.

Consistent yet even stronger conclusions are derived on 3D task, compared
with Table. 2 on 2D task.

Comparison with the state of the art Previous works are abundant with
different experiment settings and fall into three categories. They are compared
to our method in Table. 10 (A), (B) and Table. 11 respectively.

Our approach is the best single-image method that outperforms previous
works by large margins. Specifically, it improves the state-of-the-art, by 5.1 mm
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Table 9. For two methods (H2/I2), two input image→feature map (f) resolutions, and
two heat map sizes (using either 3 or 2 upsampling layers). Strategy 2 and Protocol 2
are used. Backbone network is ResNet-50

Size ×2,×2,×2 ×2,×2 Size ×2,×2,×2 ×2,×2

256→ 8 (a)→ 16→ 32→ 64 (b)→ 16→ 32 128→ 4 (c)→ 8→ 16→ 32 (d)→ 8→ 16

H2 59.3 61.5 66.6 86.4
I2 52.4 51.7 57.1 60.9

Table 10. Comparison with previous work on Human3.6M. All methods used extra
2D training data. Ours use MPII data in the training. Methods in Group A and B
use Protocol 1 and 2, respectively. Ours is the best single-image method under both
scenarios. Methods with ∗ exploit temporal information and are complementary to
ours. We even outperform them in Protocol 2

Method Hossain Dabral Yasin Rogez Chen Moreno Zhou Martinez Kanazawa Sun Fang Ours
(A, Pro. 1) [21]∗ [14]∗ [51] [41] [8] [32] [54] [30] [26] [42] [17]

PA MPJPE 42.0 36.3 108.3 88.1 82.7 76.5 55.3 47.7 56.8 48.3 45.7 40.6

Method Hossain Dabral Chen Tome Moreno Zhou Jahangiri Mehta Martinez Kanazawa Fang Sun Ours
(B, Pro. 2) [21]∗ [14]∗ [8] [46] [32] [54] [25] [31] [30] [26] [17] [42]

MPJPE 51.9 52.1 114.2 88.4 87.3 79.9 77.6 72.9 62.9 88.0 60.4 59.1 49.6

Table 11. Comparison with previous work on Human3.6M. Protocol 2 is used. No
extra training data is used. Ours is the best

Method Zhou[53] Tekin[44] Xingyi[56] Sun [42] Pavlakos[37] Ours

MPJPE 113.0 125.0 107.3 92.4 71.9 64.1

(relative 11.2%) in Table. 10(A), 9.5 mm (relative 16.1%) in Table. 10(B), and
7.8 mm (relative 10.8%) in Table. 11. Note that Dabral et al. [14] and Hossain
et al. [21] exploit temporal information and are complementary to our approach.
Nevertheless, ours is already very close to them in Table. 10(A) and even better
in Table. 10(B).

6 Conclusions

We present a simple and effective integral regression approach that unifies the
heat map representation and joint regression approaches, thus sharing the merits
of both. Solid experiment results validate the efficacy of the approach. Strong
performance is obtained using simple and cheap baseline networks, making our
approach a favorable choice in practical scenarios. We apply the integral re-
gression on both 3D and 2D human pose estimation tasks and push the very
state-of-the-art on MPII, COCO and Human3.6M benchmarks.
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