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Abstract. Deep learning models are susceptible to input specific noise,
called adversarial perturbations. Moreover, there exist input-agnostic
noise, called Universal Adversarial Perturbations (UAP) that can affect
inference of the models over most input samples. Given a model, there
exist broadly two approaches to craft UAPs: (i) data-driven: that require
data, and (ii) data-free: that do not require data samples. Data-driven
approaches require actual samples from the underlying data distribution
and craft UAPs with high success (fooling) rate. However, data-free ap-
proaches craft UAPs without utilizing any data samples and therefore
result in lesser success rates. In this paper, for data-free scenarios, we
propose a novel approach that emulates the effect of data samples with
class impressions in order to craft UAPs using data-driven objectives.
Class impression for a given pair of category and model is a generic
representation (in the input space) of the samples belonging to that cat-
egory. Further, we present a neural network based generative model that
utilizes the acquired class impressions to learn crafting UAPs. Experi-
mental evaluation demonstrates that the learned generative model, (i)
readily crafts UAPs via simple feed-forwarding through neural network
layers, and (ii) achieves state-of-the-art success rates for data-free sce-
nario and closer to that for data-driven setting without actually utilizing
any data samples.

Keywords: adversarial attacks · attacks on ML systems · data-free at-
tacks · image-agnostic perturbations · class impressions

1 Introduction

Machine learning models are pregnable (e.g. [4,3,9]) at test time to specially
learned, mild noise in the input space, commonly known as adversarial pertur-
bations. Data samples created via adding these perturbations to clean samples
are known as adversarial samples. Lately, the Deep Neural Networks (DNN)
based object classifiers are also observed [28,7,14,11] to be drastically affected
by the adversarial attacks with quasi imperceptible perturbations. Further, it
is observed (e.g. [28]) that these adversarial perturbations exhibit cross model
generalizability (transferability). This means, often same adversarial sample gets
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Fig. 1. Overview of the proposed approach. Stage-I, “Ask and Acquire” generates the
“class impressions” to mimic the effect of actual data samples. Stage-II, “Attack” learns
a neural network based generative model G which crafts UAPs from random vectors z
sampled from a latent space.

incorrectly classified by multiple models in spite of having different architectures
and trained with disjoint training datasets. It enables attackers to launch simple
black-box attacks [21,12] on the deployed models without any knowledge about
their architecture and parameters.

However, most of the existing works (e.g. [28,14]) craft input-specific per-
turbations, i.e., perturbations are functions of input and they may not transfer
across data samples. In other words, perturbation crafted for one data sample
most often fails to fool the model when used to corrupt other clean data samples.
However, recent findings by Moosavi-Dezfooli et al. [13] and Mopuri et al. [17,15]
demonstrated that there exist input-agnostic (or image-agnostic) perturbations
that when added, most of the data samples can fool the target classifier. Such
perturbations are known as “Universal Adversarial Perturbations (UAP)”, since
a single noise can adversarially perturb samples from multiple categories. Fur-
thermore, it is observed that similar to image-specific perturbations, UAPs also
exhibit cross model generalizability enabling easy black-box attacks. Thus, UAPs
pose a severe threat to the deployment of the vision models and require a metic-
ulous study. Especially for applications which involve safety (e.g. autonomous
driving) and privacy of the users (e.g. access granting), it is indispensable to
develop robust models against such adversarial attacks.
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Approaches that craft UAPs can be broadly categorized into two classes: (i)
data-driven, and (ii) data-free approaches. Data-driven approaches such as [13]
require access to samples of the underlying data distribution to craft UAPs using
a fooling objective (e.g. confidence reduction as in eq (2)). Thus, UAPs crafted
via data-driven approaches typically result in higher success rate (or fooling
rate), i.e., fool the models more often. Note that data-driven approaches have
access to the data samples and the model architecture along with the parameters.
Further, performance of the crafted UAPs is observed ([17,15]) to be proportional
to the number of data samples available during crafting. However the data-free
approaches (e.g. FFF [17]), with a goal to understand the true stability of the
the models, indirectly craft UAPs (e.g. activation loss of FFF [17]) instead of
using a direct fooling objective. Note that data-free approaches have access to
only the model architecture and parameters but not to any data samples. Thus,
it is a challenging problem to craft UAPs in data-free scenarios and therefore the
success rate of these UAPs would typically be lesser compared to that achieved
by the data-driven ones.

In spite of being difficult, data-free approaches have important advantages:

– When compared to their data-driven counter parts, data-free approaches
reveal accurate vulnerability of the learned representations and in turn the
models. On the other hand, success rates reported by data-driven approaches
act as a sort of upper bounds on the achievable rates. Also, it is observed
([17,15]) that their performance is proportional to the amount of data avail-
able for crafting UAPs.

– Because of the strong association of the data-driven UAPs to the target data,
they suffer poor transferability across datasets. On the other hand, data-free
UAPs transfer better across datasets [17,15].

– Data-free approaches are typically faster [17] to craft UAPs.

Thus, in this paper, we attempt to achieve best of both worlds, i.e., effective-
ness of the data-driven objectives and efficiency, transferability of the data-free
approaches. We present a novel approach for the data-free scenarios that emu-
lates the effect of actual data samples with “class impressions” of the model and
crafts UAPs via learning a feed-forward neural network. Class impressions are
the reconstructed images from the model’s memory which is the set of learned
parameters. In other words, they are generic representations of the object cate-
gories in the input space (as shown in Fig. 2). In the first part of our approach,
we acquire class impressions via simple optimization (sec. 3.2) that can serve
as representative samples from the underlying data distribution. After acquir-
ing multiple class impressions for each of the categories, we perform the second
part, which is learning a generative model (a feed-forward neural network) for
efficiently generating UAPs. Thus, unlike the existing works ([13,17]) that solve
complex optimizations to generate UAPs, our approach crafts via a simple feed-
forward operation through the learned neural network. The major contributions
of our work can be listed as:
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– We propose a novel approach to handle the absence of data (via class im-
pressions, sec. 3.2) for crafting UAPs and achieve state-of-the-art success
(fooling) rates.

– We present a generative network (sec. 3.3) that learns to efficiently generate
UAPs utilizing the class impressions.

The paper is organized as followed: section 2 describes the relevant existing
works, section 3 presents the proposed framework in detail, section 4 reports
comprehensive experimental evaluation of our approach and finally section 5
concludes the paper.

2 Related Works

Adversarial perturbations (e.g. [28,7,14]) reveal the vulnerability of the learn-
ing models to specific noise. Further, these perturbations can be input agnos-
tic [13,17] called “Universal Adversarial Perturbations (UAP)” and can pose
severe threat to the deployability of these models. Existing approaches to craft
the UAPs ([13,17,15]) perform complex optimizations every time we wish to
craft a UAP. Differing from the previous works, we present a neural network
that readily crafts UAPs. Only similar work by Baluja et al. [2] presents a neu-
ral network that transforms a clean image into an adversarial sample by passing
through a series of layers. However, we learn a generative model which maps a
latent space to that of UAPs. A concurrent work by Mopuri et al. [18] presents
a similar generative model approach to craft perturbations but for data-driven
case.

Also, existing data-free method [17] to craft UAPs achieves significantly
less success rates compared to the data-driven methods such as UAP [13] and
NAG [18]. In this paper, we attempted to reduce the gap between them by
emulating the effect of data with the proposed class impressions. Our class im-
pressions are obtained via simple optimization similar to visualization works such
as [26,27]. Feature visualizations [26,27,29,31,25,30,16] are introduced (i) to un-
derstand what input patterns each neuron responds to, and (ii) gain intuitions
into neural networks in order to alleviate the black-box nature of the neural
networks. Two slightly different approaches exist for feature visualizations. In
the first approach, a random input is optimized in order to maximize the acti-
vation of a chosen neuron (or set of neurons) in the architecture. This enables
to generate visializations for a given neuron (as in [26]) in the input space.

In other approaches such as the Deep Dream [19] instead of choosing a neuron
to activate, arbitrary natural image is passed as an input, and the network
enhances the activations that are detected. This way of visualization finds the
subtle patterns in the input and amplify them. Since our task is to generate class
impressions that emulate the behaviour of real samples, we follow the former
approach.

Since the objective is to generate class impressions that can be used to craft
UAPs with the fooling objective, softmax probability neuron seems like the obvi-
ous choice to activate. However, this intuition is misleading, [26,20] have shown
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that directly optimizing at softmax leads to increase in the class probability by
reducing the pre-softmax logits of other classes. Also, often it does not increase
the pre-softmax value of the desired class, thus giving poor visualizations. In
order to make the desired class more likely, we optimize the pre-softmax logits
and our observations are in agreement with that of [26,20].

3 Proposed Approach

In this section we present the proposed approach to craft efficient UAPs for
data-free scenarios. It is understood ([13,17,18]) that, because of data availabil-
ity and a more direct optimization, data-driven approaches can craft UAPs that
are effective in fooling. On the other hand, the data-free approaches can quickly
craft generalizable UAPs by solving relatively simple and indirect optimizations.
In this paper we aim to achieve the effectiveness of the data-driven approaches in
the data-free setup. For this, first we create representative data samples called,
class impressions (Figure 2) to mimic the actual data samples of the underly-
ing distribution. Later, we learn a neural network based generative model to
craft UAPs using the generated class impressions and a direct fooling objective
(eq.(2)). Figure 1 shows the overview of our approach. Stage-I, “Ask and Ac-
quire” is about the class impression generation from the target CNN model and
Stage-II, “Attack” is training the generative model that learns to craft UAPs us-
ing the class impressions obtained in the first stage. In the following subsections,
we will discuss these two stages in detail.

3.1 Notation

We first define the notations followed throughout this paper:

– f : target classifier (TC) under attack, which is a trained model with frozen
parameters

– f ik: kth activation in ith layer of the target classifier
– fps/m: output of the pre-softmax layer
– fs/m: output of the softmax (probability) layer
– v: additive universal adversarial perturbation (UAP)
– x: clean input to the target classifier, typically either data sample or class

impression
– ξ: max-norm (l1) constraint on the UAPs, i.e., maximum allowed strength

of perturbation that can be added or subtracted at each pixel in the image

3.2 Ask and Acquire the Class Impressions

Availability of the actual data samples can enable to solve for a direct fooling
objective thus craft UAPs that can achieve high success rates [13]. Hence in the
data-free scenarios we generate samples that act as proxy for data. Note that the
attacker has access to only the model architecture and the learned parameters
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Goldfish Cock Wolf spider Lakeland terrier Monarch

Fig. 2. Sample class impressions generated for VGG-F [5] model. The name of the
corresponding categories are mentioned below the images. Note that the impressions
have several natural looking patterns located in various spatial locations and in multiple
orientations.

of the target classifier (CNN). The learned parameters are a function of training
data and procedure. They can be treated as model’s memory in which the essence
of training has been encoded and saved. The objective of our first stage, “Ask
and Acquire” is to tap the model’s memory and acquire representative samples
of the training data. We can then use only these representative samples to craft
UAPs to fool the target classifier.

Note that we do not aim to generate natural looking data samples. Instead,
our approach creates samples for which the target classifier predicts strong confi-
dence. That is, we create samples such that the target classifier strongly believes
them to be actual samples that belong to categories in the underlying data distri-
bution. In other words, these are impressions of the actual training data that we
try to reconstruct from model’s memory. Therefore we name them Class Impres-
sions. The motivation to generate these class impression is that, for the purpose
of optimizing a fooling objective (e.g. eq. 2) it is sufficient to have samples that
behave like natural data samples, which is, to be predicted with high confidence.
Thus, the ability of the learned UAPs to act as adversarial noise to these samples
with respect to the target classifier generalizes to the actual samples.

Top panel of Fig. 1 shows the first stage of our approach to generate the class
impressions. We begin with a random noisy image sampled from U [0, 255] and
update it till the target classifier predicts a chosen category with high confidence.
We achieve this via performing the optimization shown in eq (1). Note that we
can create impression (CIc) for any chosen class (c) by maximizing the predicted
confidence to that class. In other words, we modify the random (noisy) image
till the target network believes it to be an input from a chosen class c with high

confidence. We consider the activations in the pre-softmax layer f
ps/m
c (before

we apply the softmax non-linearity) and maximize the model’s confidence.

CIc = argmax
x

fps/mc (x) (1)

While learning the class impressions, we perform typical data augmentations
such as (i) random rotation in [−5o, 5o], (ii) scaling by a factor randomly se-
lected from {0.95, 0.975, 1.0, 1.025}, (iii) RGB jittering, and (iv) random crop-
ping. Along with the above typical augmentations, we also add random uniform
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noise in U [−10, 10]. Purpose of this augmentation is to generate robust impres-
sions that behave similar to natural samples with respect to the augmentations
and random noise. We can generate multiple impressions for a single category
by varying the initialization, i.e., multiple initializations result in multiple class
impressions. Note that the dimensions of the generated impressions would be
same as that required by the model’s input (e.g., 224×224×3). We have imple-
mented the optimization given in eq (1) in TensorFlow [1] framework. We used
Adam [10] optimizer with a learning rate of 0.1 with other parameters set to
their default values. In order to mimic the variety in terms of the difficulty of
recognition (from easy to difficult samples), we have devised a stopping criterion
for the optimization. We presume that the difficulty is inversely related to the
confidence predicted by the classifier. Before we start the optimization in eq. (1),
we randomly sample a confidence value uniformly in [0.55, 0.99] range and stop
our optimization after the predicted confidence by the target classifier reaches
that. Thus, the generated class impressions will have samples of varied difficulty.

Fig. 2 shows sample class impressions generated for VGG-F [5] model. The
corresponding category labels are mentioned below the impressions. Note that
the generated class impressions clearly show several natural looking patterns
located in various spatial locations and in multiple orientations. Fig. 3 shows
multiple class impressions generated by our method starting from different ini-
tializations for “Squirrel Monkey” category. Note that the impressions have dif-
ferent visual patterns relevant to the chosen category. We have generated 10
class impressions for each of the 1000 categories in ILSVRC dataset resulting in
a total of 10000 class impressions. These samples will be used to learn a neural
network based generative model that can craft UAPs through a feed-forward
operation.

Fig. 3. Multiple class impressions for “Squirrel Monkey” category generated from dif-
ferent initializations for VGG-F [5] target classifier.

3.3 Attack: Craft the data-free perturbations

After generating the class impressions in the first stage of our approach, we treat
them as training data for learning a generator to craft the UAPs. Bottom panel
of Fig. 1 shows the overview of our generative model. In the following subsections
we present the architecture of our model along with the objectives that drive
the learning.
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3.4 Fooling loss

We learn a neural network (G) similar to the generator part of a Generative
Adversarial network (GAN) [6]. G takes a random vector z whose components
are sampled from a simple distribution (e.g. U [−1, 1]) and transforms it into a
UAP via a series of deconvolution layers. Note that in practice a mini-batch of
vectors is processed. We train G in order to be able to generate the UAPs that
can fool the target classifier over the underlying data distribution. To be specific,
we train with a fooling loss computed over the generated class impressions (from
Stage-I, sec. 3.2) as the training data. Let us denote the predicted label on clean
sample (x) as ‘clean label’ and that of a perturbed sample (x+ v) as ‘perturbed
label’. The objective is to make the ‘clean’ and ‘perturbed’ labels different. To
ensure this to happen, our training loss reduces the confidence predicted to
the ‘clean label’ on the perturbed sample. Because of the softmax nonlinearity,
confidence predicted to some other label increases and eventually causes a label
flip, which is fooling the target classifier. Hence, we formulate our fooling loss as

Lf = −log(1− fs/mc (x+ v)) (2)

where c is the clean label predicted on x and f
s/m
c is the probability (soft-

max output) predicted to category c. Note that this objective is similar to most
of the adversarial attacking methods (e.g. FGSM [7,21]) in spirit.

3.5 Diversity loss

Fooling loss Lf (eq.(2)) only trains G to learn UAPs that can fool the target
classifier. In order to avoid learning a degenerate G which can only generate a
single strong UAP, we enforce diversity in the generated UAPs. We enforce that
the crafted UAPs within a mini-batch are diverse via maximizing the pairwise
distance between their embeddings f l(x + vi) and f l(x + vj), where vi and vj
belong to generations within a mini-batch. We consider the layers of the target
CNN for projecting (x+v). Thus our training objective is comprised of a diversity
loss given by

Ld = −
K∑

i,j=1,i6=j

d(f l(x+ vi), f
l(x+ vj)) (3)

where K is the mini-batch size, and d is a suitable distance metric (e.g.,
Euclidean or cosine distance) computed between the features extracted between
a pair of adversarial samples. Note that the class impression x present in the
two embeddings f(x+ vi)andf(x+ vj) is same. Therefore, pushing them apart
via minimizing Ld will make the UAPs vi and vj dissimilar.

Therefore the loss we optimize for training our generative model for crafting
UAPs is given by

Loss = Lf + λLd (4)

Note that this objective is similar in spirit to that presented in the concurrent
work [18].
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4 Experiments

In this section we present our experimental setup and the effectiveness of the
proposed method in terms the success rates achieved by the crafted UAPs. For
all our experiments we have considered ILSVRC [23] dataset and recognition
models trained on it as the target CNNs. Note that, since we have considered
data-free scenario, we extract class impressions to serve as data samples. Similar
to the existing data-driven approach ([13]) that uses 10 data samples per class,
we also extract 10 impressions for each class which makes a training data of
10000 samples.

4.1 Implementation details

The dimension of the latent space is chosen as 10, i.e, z is random 10D vector
sampled from U [−1, 1]. We have investigated with other dimensions (e.g. 50, 100,
etc.) for the latent space and found that 10 is efficient with respect to the number
of parameters though the success rates are not very different. We used a mini-
batch size of 32. All our experiments are implemented in TensorFlow [1] using
Adam optimizer. The generator part (G) of the network maps the latent space
Z to the UAPs for a given target classifier. The architecture of our generator
consists of 5 deconv layers. The final deconv layer is followed by a tanh non-
linearity and scaling by ξ. Doing so limits the perturbations to

[
−ξ, ξ

]
. Similar

to [13,17], the value of ξ is chosen to be 10 in order to add negligible adversarial
noise. The architecture of G is adapted from [24]. We experimented on a variety
of CNN architectures trained to perform object recognition on the ILSVRC [23]
dataset. The generator (G) architecture is unchanged for different target CNN
architectures and separately learned with the corresponding class impressions.

While computing the diversity loss (eq. 3), for each of the class impressions in
the mini-batch (x), we select a pair of generated UAPs (v1 and v2) and compute
the distance between f l(x+ v1) and f l(x+ v2). The diversity loss would be sum
of all such distances computed over the mini-batch members. We typically con-
sider the softmax layer of the target CNN for extracting the embeddings. Also,
since the embeddings are probability vectors, we use cosine distance between the
extracted embeddings. Note that, we can use any other intermediate layer for
embedding and Euclidean distance for measuring their separation.

Since our objective is to generate diverse UAPs that can fool effectively, we
give equal weight to both the components of the loss, i.e., we keep λ = 1 in
eq. (4).

4.2 UAPs and the success rates

Similar to [13,17,18,15] we measure the effectiveness of the crafted UAPs in
terms of their “success rate”. It is the percentage of data samples (x) for which
the target CNN predicts a different label upon adding the UAP (v). Note that
we compute the success rates over the 50000 validation images from ILSVRC
dataset. Table 1 reports the obtained success rates of the UAPs crafted by our
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Table 1. Success rates of the perturbations modelled by our generative network, com-
pared against the data-free approach FFF [17]. Rows indicate the target net for which
perturbations are modelled and columns indicate the net under attack. Note that, in
each row, entry where the target CNN matches with the network under attack repre-
sents white-box attack and the rest represent the black-box attacks. The mean fooling
rate achieved by the Generator (G) trained for each of the target CNNs is shown in
the rightmost column.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-152 Mean FR

VGG-F
Ours 92.37 70.12 58.51 47.01 52.19 43.22 60.56
FFF 81.59 48.20 38.56 39.31 39.19 29.67 46.08

CaffeNet
Ours 74.68 89.04 52.74 50.39 53.87 44.63 60.89
FFF 56.18 80.92 39.38 37.22 37.62 26.45 46.29

GoogLeNet
Ours 57.90 62.72 75.28 59.12 48.61 47.81 58.57
FFF 49.73 46.84 56.44 40.91 40.17 25.31 43.23

VGG-16
Ours 58.27 56.31 60.74 71.59 65.64 45.33 59.64
FFF 46.49 43.31 34.33 47.10 41.98 27.82 40.17

VGG-19
Ours 62.49 59.62 68.79 69.45 72.84 51.74 64.15
FFF 39.91 37.95 30.71 38.19 43.62 26.34 36.12

ResNet-152
Ours 52.11 57.16 56.41 47.21 48.78 60.72 53.73
FFF 28.31 29.67 23.48 19.23 17.15 29.78 24.60

CaffeNet VGG-F GoogLeNet VGG-19 ResNet-152

Fig. 4. Sample universal adversarial perturbations (UAP), learned by the proposed
framework for different networks, the corresponding target CNN is mentioned below
the UAP. Note that images shown are one sample for each of the target networks, and
across different samplings the perturbations vary visually as shown in Fig. 6.

generative model G on various networks. Each row denotes the target model for
which we train G and the columns indicate the model we attack to fool. Thus,
we report the transfer rates on the unseen models also, which is referred to
as “black-box attacking” (off-diagonal entries). Similarly, when the target CNN
over which we learn G matches with the model under attack, it is referred to
as “white-box attacking” (diagonal entries). Note that the right most column
shows the mean success rates achieved by the individual generator networks (G)
obtained across all the 6 CNN models. Proposed method can craft UAPs that
have on an average 20.18% higher mean success rate compared to the existing
data-free method to craft UAPs (FFF [17]).

Figure 4 shows example UAPs learned by our approach for different target
CNN models. Note that the pixel values in those perturbations lie in [−10, 10].
Also the UAPs for different models look different. Figure 5 shows a clean and
corresponding perturbed samples after adding UAPs learned for different target
CNNs. Note that each of the target CNNs misclassify them differently.
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For the sake of completeness, we compare our approach with the data-driven
counterpart also. Table 2 presents the white-box success rates for both data-
free and data-driven methods to craft UAPs. We also show the fooling ability
of random noise sampled in [−10, 10] as a baseline. Note that the success rates
obtained by random noise is very less compared to the learned UAPs. Thus the
adversarial perturbations are highly structured and very effective compared to
the performance of random noise as perturbation.

On the other hand, the proposed method of acquiring class impressions from
the target model’s memory increases the mean success rate by an absolute 20%
from that of current state-of-the-art data-free approach (FFF [17]). Also, note
that our approach performs close to the data-driven approach UAP [13] with a
gap of 8%. These observations suggest that the class impressions are effective to
serve the purpose of the actual data samples in the context of learning to craft
the UAPs.

Table 2. Effectiveness of the proposed approach to handle the data absence. We com-
pare the success rates against the data-driven approach UAP [13], data-free approach
FFF [17] and random noise baseline.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-152 Mean

Baseline 12.62 12.9 10.29 8.62 8.40 8.99 10.30

FFF (w/o Data) 81.59 80.92 56.44 47.10 43.62 29.78 56.58

Ours(w/o Data) 92.37 89.04 75.28 71.59 69.45 60.72 76.41

UAP (w Data) 93.8 93.1 78.5 77.8 80.8 84.0 84.67

Clean: Sand
Viper

VGG-F:
Maypole

CaffeNet:
Afghan Hound

VGG19:
Egyptian Cat

ResNet152:
Chiton

Fig. 5. Clean image (leftmost) of class “Sand Viper”, followed by adversarial images
generated by adding UAPs crafted for various target CNNs. Note that the perturbations
while remaining imperceptible are leading to different misclassifications.

4.3 Comparison with data dependent approaches.

Table 3 presents the transfer rates achieved by the image-agnostic perturbations
crafted by the proposed approach. Each row denotes the target model on which
the generative model (G) is learned and columns denotes the models under
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attack. Hence, diagonal entries denote the white-box adversarial attacks and
the off diagonal entries denote the black-box attacks. Note that the main draft
presents only the white-box success rates, for completeness we present both here.
Also note that, in spite of being a data-free approach the mean SR (extreme right
column) obtained by our method is very close to that achieved by the state-of-
the-art data-driven approach to craft UAPs.

Table 3. Success rates (SR) for the perturbations crafted by the proposed approach
compared against the state-of-the-art data driven approach for crafting the UAPs.

VGG-F CaffeNet GoogLeNet VGG-16 VGG-19 ResNet-152 Mean SR

VGG-F
Ours 92.37 70.12 58.51 47.01 52.19 43.22 60.56
UAP 93.7 71.8 48.4 42.1 42.1 47.4 57.58

CaffeNet
Ours 74.68 89.04 52.74 50.39 53.87 44.63 60.89
UAP 74.0 93.3 47.7 39.9 39.9 48.0 56.71

GoogLeNet
Ours 57.90 62.72 75.28 59.12 48.61 47.81 58.57
UAP 46.2 43.8 78.9 39.2 39.8 45.5 48.9

VGG-16
Ours 58.27 56.31 60.74 71.59 65.64 45.33 59.64
UAP 63.4 55.8 56.5 78.3 73.1 63.4 65.08

VGG-19
Ours 62.49 59.62 68.79 69.45 72.84 51.74 64.15
UAP 64.0 57.2 53.6 73.5 77.8 58.0 64.01

ResNet-152
Ours 52.11 57.16 56.41 47.21 48.78 60.72 53.73
UAP 46.3 46.3 50.5 47.0 45.5 84.0 53.27

4.4 Diversity

The objective of having the diversity component (Ld) in the loss is to avoid
learning a single UAP and to learn a generative model that can generate diverse
set of UAPs for a given target CNN. We examine the distribution of predicted
labels after adding the generated UAPs. This can reveal if there is a set of sink
labels that attract most of the predictions. We have considered the G learned to
fool VGG-F model and 50000 samples of ILSVRC validation set. We randomly
select 10 UAPs generated by the G and compute the mean histogram of pre-
dicted labels. After sorting the histogram, most of the predicted labels (95%)
for proposed approach spread over 212 labels out of the total 1000 target la-
bels. Whereas the same number for UAP [13] is 173. The observed 22.5% higher
diversity is attributed to our diversity component (Ld).

4.5 Simultaneous Targets

The ability of the adversarial perturbations to generalize across multiple models
is observed with both image-specific ([28,7]) and agnostic perturbations ([13,17]).
It is an important issue to be investigated since it makes simple black-box attacks
possible via transferring the perturbations to unknown models. In this subsection
we investigate to learn a single G that can can craft UAPs to simultaneously
fool multiple target CNNs.



Ask, Acquire, and Attack 13

Table 4. Generalizability of the UAPs crafted by the ensemble generator GE learned
on three target CNNs: CaffeNet, VGG-16 and ResNet-152. Note that because of the
ensemble of the target CNNs, GE learns to craft perturbations that have higher mean
black-box success rates (MBBSR) compared to that of the individual generators.

GC GV 16 GR152 GE

MBBSR 60.34 61.46 52.43 68.52

We replace the single target CNN with an ensemble of three models: Caf-
feNet, VGG-16 and ResNet-152 and learn GE using the fooling and diversity
losses. Note that, since the class impressions vary from model to model, for this
experiment we generate class impressions from multiple CNNs. Particularly, we
simultaneously maximize the pre-softmax activation (eq.( 1)) of the desired class
across individual target CNNs via optimizing their mean. We then investigate
the generalizability of the generated perturbations. Table 4 presents the mean
black-box success rate (MBBSR) for the UAPs generated by GE on the remain-
ing 3 models. For comparison, we present the MBBSR of the generators learned
on the individual models. Because of the ensemble of the target CNNs GE learns
to craft more general UAPs and therefore achieves higher success rates than the
individual generators.

4.6 Interpolating in the latent space

Our generator network (G) is similar to that in a typical GAN [6,22]. It maps
the latent space to the space of UAPs for the given target classifier(s). In case of
GANs, interpolating in the latent space can reveal signs of memorization. While
traversing the latent space, smooth semantic change in the generations means
the model has learned relevant representations. In our case, since we generate
UAPs, we investigate if the interpolation has smooth visual changes and the
intermediate UAPs can also fool the target CNN coherently.

Figure 6 shows the results of interpolating in the latent space for ResNet-152
as the target CNN. We sample a pair of points (z1 and z2) in the latent space and
consider 5 intermediate points on the line joining them. We generate the UAPs
corresponding to all these points by passing them through the learned genera-
tor architecture G. Figure 6 shows the generated UAPs and the corresponding
success rates in fooling the target CNN. Note that the UAPs change visually
smoothly between any pair of points and the success rate remains unchanged.
This ensures that the representations learned are relevant and interesting.

4.7 Adversarial Training

We have performed adversarial training of target CNN with 50% mixture of
clean and adversarial samples crafted using the learned generator (G). After 2
epochs, success rate of the G has dropped from 75.28 to 62.51. Note that the
improvement is minor and the target CNN is still vulnerable. We then repeated
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0.0∗z1+1.0∗z2 :
60.58

0.25 ∗ z1 +
0.75 ∗ z2 : 59.16

0.5∗z1+0.5∗z2 :
60.25

0.75 ∗ z1 +
0.25 ∗ z2 : 59.87

1.0∗z1+0.0∗z2 :
60.09

Fig. 6. Interpolation between a pair of points in Z space shows that the mapping
learned by our generator has smooth transitions. The figure shows the perturbations
corresponding to 5 points on the line joining a pair of points (z1 and z2) in the latent
space. Note that these perturbations are learned to fool the ResNet-152 [8] architecture.
Below each perturbation, the corresponding success rate obtained over 50000 images
from ILSVRC 2014 validation images is mentioned. This shows the fooling capability of
these intermediate perturbations is also high and remains same at different locations.

the generator training for the finetuned network, resulting generator fools the
finetuned network with an increased success rate of 68.72. After repeating this
for multiple iterations, we observe that adversarial training does not make the
target CNN significantly robust.

5 Discussion and Conclusions

In this paper we have presented a novel approach to mitigate the absence of data
for crafting Universal Adversarial Perturbations (UAP). Class impressions are
representative images that are easy to obtain via simple optimization from the
target model. Using class impressions, our method drastically reduces the perfor-
mance gap between the data-driven and data-free approaches to craft the UAPs.
Success rates closer to that of data-driven UAPs demonstrate the effectiveness
of class impressions in the context of crafting UAPs.

Another way to look at this observation is that it would be possible to ex-
tract useful information about the training data from the model parameters in
a task specific manner. In this paper, we have extracted the class impressions
as proxy data samples to train a generative model that can craft UAPs for the
given target CNN classifier. It would be interesting to explore such feasibility
for other applications as well. Particularly, we would like to investigate if the
existing adversarial setup of the GANs might get benefited with any additional
information extracted from the discriminator network and generate more natural
looking synthetic data.

The generative model presented in our approach is an efficient way to craft
UAPs. Unlike the existing methods that perform complex optimizations, our
approach constructs UAPs through a simple feed forward operation. Significant
success rates, surprising cross model generalizability even in the absence of data
reveal severe susceptibilities of the current deep learning models.
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