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Abstract Do convolutional networks really need a fixed

feed-forward structure? What if, after identifying the

high-level concept of an image, a network could move

directly to a layer that can distinguish fine-grained dif-

ferences? Currently, a network would first need to ex-

ecute sometimes hundreds of intermediate layers that

specialize in unrelated aspects. Ideally, the more a net-

work already knows about an image, the better it should

be at deciding which layer to compute next. In this

work, we propose convolutional networks with adap-

tive inference graphs (ConvNet-AIG) that adaptively

define their network topology conditioned on the in-

put image. Following a high-level structure similar to

residual networks (ResNets), ConvNet-AIG decides for

each input image on the fly which layers are needed. In

experiments on ImageNet we show that ConvNet-AIG

learns distinct inference graphs for different categories.

Both ConvNet-AIG with 50 and 101 layers outperform

their ResNet counterpart, while using 20% and 38%

less computations respectively. By grouping parame-

ters into layers for related classes and only executing

relevant layers, ConvNet-AIG improves both efficiency

and overall classification quality. Lastly, we also study

the effect of adaptive inference graphs on the suscep-

tibility towards adversarial examples. We observe that

ConvNet-AIG shows a higher robustness than ResNets,

complementing other known defense mechanisms.
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1 Introduction

Often, convolutional networks (ConvNets) are already

confident about the high-level concept of an image af-

ter only a few layers. This raises the question of what

happens in the remainder of the network that often

comprises hundreds of layers for many state-of-the-art

models. To shed light on this, it is important to note

that due to their success, ConvNets are used to clas-

sify increasingly large sets of visually diverse categories.

Thus, most parameters model high-level features that,

in contrast to low-level and many mid-level concepts,

cannot be broadly shared across categories. As a result,

the networks become larger and slower as the number

of categories rises. Moreover, for any given input image

the number of computed features focusing on unrelated

concepts increases.

What if, after identifying that an image contains a

bird, a ConvNet could move directly to a layer that can

distinguish different bird species, without executing in-

termediate layers that specialize in unrelated aspects?

Intuitively, the more the network already knows about

an image, the better it could be at deciding which layer

to compute next. This shares resemblance with decision

trees that employ information theoretic approaches to

select the most informative features to evaluate. Such a

network could decouple inference time from the number

of learned concepts. A recent study [32] provides a key

insight towards the realization of this scenario. The au-

thors study residual networks (ResNets) [11] and show

that almost any individual layer can be removed from

a trained ResNet without interfering with other layers.

This leads us to the following research question: Do we

really need fixed structures for convolutional networks,

or could we assemble network graphs on the fly, condi-

tioned on the input?
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In this work, we propose ConvNet-AIG, a convo-

lutional network that adaptively defines its inference

graph conditioned on the input image. Specifically, Con-

vNet-AIG learns a set of convolutional layers and de-

cides for each input image which layers are needed. By

learning both general layers useful to all images and

expert layers specializing on subsets of categories, it

allows to only compute features relevant to the input

image. It is worthy to note that ConvNet-AIG does not

require special supervision about label hierarchies and

relationships to guide layers to specialize.

Figure 1 gives an overview of our approach. ConvNet-

AIG (bottom) follows a structure similar to a ResNet

(center). The key difference is that for each residual

layer, a gate determines whether the layer is needed

for the current input image. The main technical chal-

lenge is that the gates need to make discrete decisions,

which are difficult to integrate into convolutional net-

works that we would like to train using gradient de-

scent. To incorporate the discrete decisions, we build

upon recent work [4,19,25] that introduces differen-

tiable approximations for discrete stochastic nodes in

neural networks. In particular, we model the gates as

discrete random variables over two states: to execute

the respective layer or to skip it. Further, we model the

gates conditional on the output of the previous layer.

This allows to construct inference graphs adaptively

based on the input and to train both the convolutional

weights and the discrete gates jointly end-to-end.

In experiments on ImageNet [5], we demonstrate

that ConvNet-AIG effectively learns to generate infer-

ence graphs such that for each input only relevant fea-

tures are computed. In terms of accuracy both ConvNet-

AIG 50 and ConvNet-AIG 101 outperform their ResNet

counterpart, while at the same time using 20% and 38%

less computations. We further show that, without spe-

cific supervision, ConvNet-AIG discovers parts of the

class hierarchy and learns specialized layers focusing on

subsets of categories such as animals and man-made ob-

jects. It even learns distinct inference graphs for some

mid-level categories such as birds, dogs and reptiles.

By grouping parameters for related classes and only

executing relevant layers, ConvNet-AIG both improves

efficiency and overall classification quality. Lastly, we

also study the effect of adaptive inference graphs on

susceptibility towards adversarial examples. We show

that ConvNet-AIG is consistently more robust than

ResNets, independent of adversary strength and that

the additional robustness persists even when applying

additional defense mechanisms.
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Fig. 1 ConvNet-AIG (bottom) follows a high level struc-
ture similar to ResNets (center) by introducing identity skip-
connections that bypass each layer. The key difference is that
for each layer, a gate determines whether to execute or skip
the layer. This enables individual inference graphs condi-
tioned on the input.

2 Related Work

Our study is related to work in multiple fields. Several

works have focused on neural network composition

for visual question answering (VQA) [1,2,20] and zero-

shot learning [26]. While these approaches include con-

volutional networks, they focus on constructing a fixed

computational graph up front to solve tasks such as

VQA. In contrast, the focus of our work is to construct

a convolutional network conditioned on the input image

on the fly during execution.

Our approach can be seen as an example of adap-

tive computation for neural networks. Cascaded clas-

sifiers [33] have a long tradition for computer vision by
quickly rejecting “easy” negatives. Recently, similar ap-

proaches have been proposed for neural networks [23,

34]. In an alternative direction, [3,27] propose to adjust

the amount of computation in fully-connected neural

networks. To adapt computation time in convolutional

networks, [14,31] propose architectures that add clas-

sification branches to intermediate layers. This allows

stopping a computation early once a satisfying level of

confidence is reached. Most closely related to our ap-

proach is the work on spatially adaptive computation

time for residual networks [6]. In that paper, a ResNet

adaptively determines after which layer to stop compu-

tation. Our work differs from this approach in that we

do not perform early stopping, but instead determine

which subset of layers to execute. This is key as it al-

lows the grouping of parameters that are relevant for

similar categories and thus enables distinct inference

graphs for different categories.

Our work is further related to network regulariza-

tion with stochastic noise. By randomly dropping
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Fig. 2 Left: During training, the output of a gate is multi-
plied with the output of its respective layer. Right: During
inference, a layer does not need to be executed if its gate
decides to skip the layer.

neurons during training, Dropout [28] offers an effec-

tive way to prevent neural networks from over-fitting.

Closely related is the work on stochastic depth [16],

where entire layers of a ResNet are randomly removed

during each training iteration. Our work resembles this

approach in that it also includes stochastic nodes that

decide whether to execute layers. However, in contrast

to our work, layer removal in stochastic depth is inde-

pendent from the input and aims to increase redun-

dancy among layers. In our work, we construct the in-

ference graph conditioned on the input image to reduce

redundancy and allow the network to learn layers spe-

cialized on subsets of the data.

Lastly, our work can also be seen as an example of

an attention mechanism in that we select specific

layers of importance for each input image to assemble

the inference graph. This is related to approaches such

as highway networks [29] and squeeze-and-excitation

networks [13] where the output of a residual layer is

rescaled according to the layer’s importance. This al-

lows these approaches to emphasize some layers and

pay less attention to others. In contrast to our work,

these are soft attention mechanisms and still require

the execution of every single layer. Our work is a hard

attention mechanism and thus enables decoupling com-

putation time from the number of categories.

3 Adaptive Inference Graphs

Traditional feed-forward ConvNets can be considered

as a set of N layers which are sequentially applied to

an input image. Figure 1 (top) provides an exemplary

illustration. Formally, let fl(·), l ∈ {1, ..., N} denote the

function computed by the lth layer. With x0 as input

image and xl as output of the lth layer, such a network

can be recursively defined as

xl = fl(xl−1) (1)

ResNets [11], shown in the center of Figure 1, change

this definition by introducing identity skip-connections

that bypass each layer, i.e., the input to each layer

is also added to its output. This has been shown to

greatly ease optimization during training. As gradients

can propagate directly through the skip-connection, early

layers still receive sufficient learning signal even in very

deep networks. A ResNet can be defined as

xl = xl−1 + fl (xl−1) (2)

In a follow-up study [32] on the effects of the skip-

connection, it has been shown that, although all layers

are trained jointly, they exhibit a high degree of inde-

pendence. Further, almost any individual layer can be

removed from a trained ResNet without harming per-

formance and interfering with other layers.

3.1 Gated Computation

Inspired by the observations in [32], we design ConvNet-

AIG, a network that can define its topology on the fly.

The architecture follows the basic structure of a ResNet

with the key difference that instead of executing all lay-

ers, the network determines for each input image which

subset of layers to execute. In particular, with layers

focusing on different subgroups of categories, it can se-

lect only those layers necessary for the specific input.

A ConvNet-AIG can be defined as

xl = xl−1 + gl(xl−1) · fl (xl−1)

where gl(xl−1) ∈ {0, 1}
(3)

where gl(xl−1) is a gate that, conditioned on the input

to the layer, decides whether to execute the next layer.

The gate chooses between two discrete states: 0 for ‘off’

and 1 for ‘on’, which can be seen as a hard attention

mechanism.

Since during training gradients are required with re-

spect to all gates’ parameters, the computational graphs

differ between training and inference time. Figure 2 il-

lustrates the key difference between the two settings.

During training, each gate and layer is executed and the

output of each gate is multiplied with the output of its

associated layer according to Equation 3. Since gl(xl−1)

is binary, activations are only propagated through the

network, where gates decide to execute their layers.

During inference, no gradients are needed. As a con-

sequence, computation can be saved as a layer does not

need to be executed if its respective gate decides to

skip the layer. The computational graph at inference

time can thus be defined as follows

xl =

{
xl−1 if gl(xl−1) = 0

xl−1 + fl (xl−1) if gl(xl−1) = 1
(4)

For the gate to be effective, it needs to address a

few key challenges. First, to estimate the relevance of
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Fig. 3 Overview of gating unit. Each gate comprises two parts. The first part estimates the relevance of the layer to be
executed. The second part decides whether to execute the layer given the estimated relevance. In particular, the Gumbel-Max
trick and its softmax relaxation are used to allow for the propagation of gradients through the discrete decision.

its layer, the gate needs to understand its input fea-

tures. To prevent mode collapse into trivial solutions

that are independent of the input features, such as al-

ways or never executing a layer, we found it to be of

key importance for the gate to be stochastic. We achieve

this by adding noise to the estimated relevance. Second,

the gate needs to make a discrete decision, while still

providing gradients for the relevance estimation. We

achieve this with the Gumbel-Max trick and its soft-

max relaxation. Third, the gate needs to operate with

low computational cost. Figure 3 provides and overview

of the two key components of the proposed gate. The

first one efficiently estimates the relevance of the respec-

tive layer for the current image. The second component

makes a discrete decision by sampling using Gumbel-

Softmax [19,25].

3.2 Estimating Layer Relevance

The goal of the gate’s first component is to estimate the

associated layer’s relevance given the input features.

The input to the gate is the output of the previous

layer xl−1 ∈ RW×H×C . Since operating on the full fea-

ture map is computationally expensive, we build upon

recent studies [13,17,24] which show that much of the

information in convolutional features is captured by the

statistics of the different channels and their interdepen-

dencies. In particular, we only consider channel-wise

means gathered by global average pooling. This com-

presses the input features into a 1× 1× C channel de-

scriptor.

zc =
1

H ×W

H∑
i=1

W∑
j=1

xi,j,c (5)

To capture the dependencies between channels, we

add a simple non-linear function of two fully-connected

layers connected with BatchNorm [18] and a ReLU [7]

activation function. The output of this operation is the

relevance score for the layer. Specifically, it is a vector

β containing two unnormalized scores for the actions

of (a) computing and (b) skipping the following layer,

respectively. Generally, a layer is considered relevant for

a given input if the score for execution β1 is larger than

the score for skipping the layer, i.e., β0. The scores are

computed as follows

β = W2σ(W1z) (6)

where σ refers to the ReLU, W1 ∈ Rd×C , W2 ∈ R2×d

and d is the dimension of the hidden layer. The lightweight

design of the gating function leads to minimal computa-

tional overhead. For a ConvNet-AIG based on Resnet 101

for ImageNet, the gating function adds only a compu-

tational overhead of 0.04%, but allows to skip 38% of

its layers on average.

3.3 Greedy Gumbel Sampling

The goal of the second component is to make a discrete

decision based on the relevance scores. For this, we build

upon recent work that propose approaches for propa-

gating gradients through stochastic neurons [4,21]. In

particular, we utilize the Gumbel-Max trick [9] and its

recent continuous relaxation [19,25].

A näıve attempt would be to choose the maximum

of the two relevance score to decide whether to exe-

cute or skip the layer. However, this approach leads

to rapid mode collapse as it does not account for the

gate’s uncertainty. Further, this approach is not differ-

entiable. Ideally, we would like to choose among the

options proportional to their relevance scores. A stan-

dard way to introduce such stochasticity is to add noise

to the scores.

We choose the Gumbel distribution for the noise, be-

cause of its key property that is known as the Gumbel-

Max trick [9]. A random variable G follows a Gumbel



Convolutional Networks with Adaptive Inference Graphs 5

distribution if G = µ− log(− log(U)), where µ is a real-

valued location parameter and U a sample from the

uniform distribution U ∼ Unif[0, 1]. Then, the Gumbel-

Max trick states that if we samples from K Gumbel

distributions with location parameters {µk′}Kk′=1, the

outcome of the kth Gumbel is the largest exactly with

the softmax probability of its location parameter

P (k is largest|{µk′}Kk′=1}) =
eµk∑K

k′=1 e
µk′

(7)

With this we can parameterize discrete distributions

in terms of Gumbel random variables. In particular,

let X be a discrete random variable with probabilities

P (X = k) ∝ αk and let {Gk}k∈{1,...,K} be a sequence

of i.i.d. Gumbel random variables with location µ = 0.

Then, we can sample from the discrete variable X by

sampling from the Gumbel random variables

X = arg max
k∈{1,...,K}

(logαk +Gk) (8)

A drawback of this approach is that the argmax

operation is not continuous. To address this, a con-

tinuous relaxation of the Gumbel-Max trick has been

proposed [19,25], replacing the argmax with a softmax.

Note that a discrete random variable can be expressed

as a one-hot vector, where the realization of the variable

is the index of the non-zero entry. With this notation,

a sample from the Gumbel-Softmax relaxation can be

expressed by the vector X̂ as follows:

X̂k = softmax ((logαk +Gk) /τ) (9)

where X̂k is the kth element in X̂ and τ is the tem-

perature of the softmax. With τ → 0, the softmax

function approaches the argmax function and Equa-

tion 9 becomes equivalent to the discrete sampler. For

τ → ∞ it becomes a uniform distribution. Since soft-

max is differentiable and Gk is independent noise, we

can propagate gradients to the probabilities αk. To gen-

erate samples with the gating function, we set the log

probabilities for the Gumbel-Max trick to the estimated

relevance scores, logα = β.

One option to employ the Gumbel-softmax estima-

tor is to use the continuous version from Equation 9

during training and obtain discrete samples with Equa-

tion 8 during testing. An alternative is the straight-

through version [19] of the Gumbel-softmax estimator.

There, during training, for the forward pass we get dis-

crete samples from Equation 8, but during the back-

wards pass we compute the gradient of the softmax

relaxation in Equation 9. Note that the estimator is

biased due to the mismatch between forward and back-

ward pass. However, we observe that empirically the

straight-through estimator performs better and leads

to inference graphs that are more category-specific. We

illustrate the two different paths during the forward and

backward pass in Figure 3.

3.4 Training Loss

For the network to learn when to use which layer, we

constrain how often each layer is allowed to be used.

Specifically, we use soft constraints by introducing an

additional loss term that encourages each layer to be ex-

ecuted at a certain target rate. This target rate could

be the same for each layer or layer specific. We ap-

proximate the execution rates for each layer over each

mini-batch and penalize deviations from the target rate.

Specifically, let L be the set of layers in the network.

Each layer has a target rate t which lies within the inter-

val ti ∈ [0, 1]. Further, with a mini-batch B of training

instances i ∈ B and the output of the gate for the lth

layer and ith training instance as gl,i, the target rate

loss is defined as

Ltarget =
1

|L|
∑
l∈L

(
1

|B|
∑
i∈B

gl,i − tl

)2

(10)

The target rate loss allows the optimization to reach

solutions in which parameters that are relevant only to

subsets of related categories are grouped together in

separate layers, which minimizes the amount of unnec-

essary features to be computed. The target rate pro-

vides an easy instrument to adjust computation time.

ConvNet-AIG is robust to a wide range of target rates.

We study the effect of the target rate on classification

accuracy and inference time in the experimental sec-
tion. With the standard multi-class logistic loss, LMC ,

the overall training loss is

LAIG = LMC + λLtarget (11)

where λ balances the two losses. In our experiments

we use λ = 2 We optimize this joint loss with mini-

batch stochastic gradient descent.

3.5 Adaptive Gating During Inference

Once the network is trained, there are different alter-

natives for how to perform adaptive gating during in-

ference. The first alternative is to follow the same pro-

cedure as used during training and use stochastic in-

ference by sampling according to Equation 8. A second

alternative is to compute the gates in a deterministic

fashion. For deterministic inference, we do not sam-

ple from the relevance scores by adding Gumbel noise,
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but directly compute the softmax over them and use a

threshold to decide whether to execute the layer

gl(xl−1) =

{
0 if softmax(β)k′ ≤ T
1 if softmax(β)k′ > T

(12)

where k′ is the element in the relevance score vector β

that corresponds to executing the layer and T ∈ [0, 1]

is a threshold. With a threshold of T = 0.5, this per-

forms an argmax over the relevance scores and executes

the layer whenever the score for executing is higher

that for skipping. Thus, varying the threshold, pro-

vides a tool that allows to control computation time

even after a model has already been trained. Our em-

pirical evaluation indicates that deterministic inference

slightly outperforms the stochastic alternative. Further

varying thresholds allows for minor trade-offs between

inference time and classification quality.

4 Experiments

We perform a series experiments to evaluate the per-

formance of ConvNet-AIG and whether it learns spe-

cialized layers and category-specific inference graphs.

We compare the different proposed training and infer-

ence modes as well as ablation studies for varying target

rates and thresholds. Lastly, we study its robustness by

analyzing the effect of adaptive inference graphs on the

susceptibility towards adversarial attacks.

4.1 Results on CIFAR

We first perform a set of experiments on CIFAR-10 [22]

to validate the proposed gating mechanism and its ef-

fectiveness to distribute computation among layers.

4.1.1 Model configurations and training details

We build a ConvNet-AIG based on the original ResNet

110 [11]. Besides the added gates, ConvNet-AIG follows

the same architecture as ResNet 110. For the gates, we

choose a hidden state of size d = 16. The additional

gate per residual block, adds a fixed overhead of 0.01%

more floating point operations and 4.8% more parame-

ters compared to the standard ResNet-110. We follow a

similar training scheme as [11] with momentum 0.9 and

weight decay 5 × 10−4. All models are trained for 350

epochs with a mini-batch size of 256. We use a step-

wise learning rate starting at 0.1 and decaying by 10−1

after 150 and 250 epochs. We adopt a standard data-

augmentation scheme, where images are padded with 4

pixels on each side, randomly cropped to 32 × 32 and

with probability 0.5 horizontally flipped.

Table 1 Test error on CIFAR 10 in %. ConvNet-
AIG 110 clearly outperforms ResNet 110 while only using
a subset of 82% of the layers. When executing all layers
(ConvNet-AIG 110∗), it also outperforms stochastic depth.

Model Error Params (106) GFLOPs

ResNet 110 [11] 6.61 1.7 0.5
Pre-ResNet 110 [12] 6.37 1.7 0.5
Stoch. Depth 110 5.25 1.7 0.5
ConvNet-AIG 110 5.76 1.78 0.41
ConvNet-AIG 110∗ 5.14 1.78 0.5

4.1.2 Results

Table 1 shows test error on CIFAR 10 for ResNet [11],

pre-activation ResNet [12], stochastic depth [16] and

their ConvNet-AIG counterpart. The table also shows

the number of model parameters and floating point op-

erations (multiply-adds). We compare two variants: For

standard ConvNet-AIG, we only execute layers with

open gates using the stochastic inference setup. As a

second variant, which we indicate by “ ∗ ”, we execute

all layers and analogous to Dropout [28] and stochas-

tic depth [16] the output of each layer is scaled by its

expected execution rate.

From the results, we observe that ConvNet-AIG out-

performs its ResNet counterparts clearly, even when us-

ing only a subset of the layers. In particular, ConvNet-

AIG 110 with a target-rate of 0.7 uses only 82% of the

layers in expectation. Since ResNet 110 might be over-

parameterized for CIFAR-10, the regularization induced

by dropping layers could be a key factor to perfor-

mance. We observe that ConvNet-AIG 110∗ outper-

forms stochastic depth, implying benefits of adaptive

inference graphs beyond regularization. In fact, ConvNet-

AIG learns to identify layers of key importance such

as downsampling layers and learns to always execute

them, although they incur computation cost. We do

not observe any downward outliers, i.e. layers that are

dropped every time.

4.2 Results on ImageNet

In experiments on ImageNet [5], we study whether the

proposed ConvNet-AIG learns to group parameters such

that for each image only relevant features are com-

puted. ImageNet is well suited for this study, as it con-

tains a large variety of categories including man-made

objects, food, and many different animals.

4.2.1 Model configurations and training details

We build ConvNet-AIGs based on ResNet 50 and ResNet

101 [11]. Again, we follow the same architectures as the
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Fig. 4 Top-1 accuracy vs. computational cost on Ima-
geNet. ConvNet-AIG 50 outperforms ResNet 50, while skip-
ping 20% of its layers in expectation. Similarly, ConvNet-
AIG 101 outperforms ResNet 101 while requiring 38% less
computations. Deterministic inference outperforms stochastic
inference, particularly for the larger models with 101 layers.

original ResNets, with the sole exception of the added

gates. The size of the hidden state is again d = 16,

adding a fixed overhead of 3.9% more parameters and

0.04% more floating point operations.

We compare ConvNet-AIG with different target-rate

schedules. First, we evaluate a ConvNet-AIG 50, where

all 16 residual layers have the same target rate. As dis-

cussed in detail below, in this case some layers are too

early in the network to yet effectively distinguish be-

tween different categories, and some layers are needed

for all inputs. Thus we also evaluate custom target-rate

schedules. In particular, for our quantitative results we

use a target rate of 1 for all layers up to the second

downsampling layer and for ResNet 50 we further set

the target rate to 1 for the third downsampling layer

and the last layer. This slightly improves quantitative

performance, and also improves convergence speed.

We follow the standard ResNet training procedure,

with mini-batch size of 256, momentum of 0.9 and weight

decay of 10−4. All models are trained for 100 epochs

with step-wise learning rate starting at 0.1 and decaying

by 10−1 every 30 epochs. We use the data-augmentation

procedure as in [11] and at test time first rescale im-

ages to 256× 256 followed by a 224× 224 center crop.

The gates are initialized to open at a rate of 85% at the

beginning of training.

4.2.2 Quantitative comparison

Figure 4 shows top-1 error on ImageNet and computa-

tional cost in terms of GFLOPs for ConvNet-AIG with

Floating point operations in 109 (GFLOPs)
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Fig. 5 Impact of inference thresholds on top-1 ac-
curacy and computational cost on ImageNet. Varying
thresholds allow for minor trade-offs between inference time
and classification quality after a model is already trained. For
larger adjustments in computation time it is more effective to
train a model with a different target-rate.

50 and 101 layers and the respective ResNets of vary-

ing depth. We further show the impact of different tar-

get rates on performance and efficiency. We compare

models with target rates for the layers after the sec-

ond downsampling layer from 0.4 to 0.7 for ConvNet-

AIG 50 and 0.3 to 0.5 for ConvNet-AIG 101. For each

variant of ConvNet-AIG we show both the performance

of stochastic inference (green) as well as deterministic

inference (red). The threshold for each model is set to

0.5. The impact of varying thresholds is shown for both

ConvNet-AIG 101 models in Figure 5. Details about

the models’ complexities and further baselines are pre-
sented in Table 2.

From the results we make the following key obser-

vations. Both ConvNet-AIG 50 and ConvNet-AIG 101

outperform their ResNet counterpart, while also using

only a subset of the layers. In particular, ConvNet-

AIG 50 saves about 20% of computation. Similarly,

ConvNet-AIG 101 outperforms its respective Resnet

while using 38% less computations. Further, we observe

that deterministic inference consistently outperforms

stochastic inference. The difference is most noticeable

for the large model with 101 layers. This is likely due

to the larger proportion of ‘specialization layers’ in the

larger model that are focusing on specific subsets of the

data, which is highlighted in Figure 6.

These results indicate that convolutional networks

do not need a fixed feed-forward structure and that Con-

vNet-AIG is an effective means to enable adaptive in-

ference graphs that are conditioned on the input image.

Figure 4 also visualizes the effect of the target rate.

As expected, decreasing the target rate reduces compu-
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Table 2 Test error on ImageNet in % for ConvNet-AIG 50, ConvNet-AIG 101 and the respective ResNets of varying
depth. ConvNet-AIGs using the Straight-Through Gumbel training paradigm outperform the standard Gumbel-Softmax,
which is indicated with ‘soft gates’. Further, models with deterministic inference outperform their stochastic counterparts. All
numbers shown are based on a threshold of 0.5. Overall, all ConvNet-AIG variants outperform their ResNet counterpart, while
at the same time using only a subset of the layers. This demonstrates that ConvNet-AIG is more efficient and also improves
overall classification quality.

Model Top 1 Top 5 #Params (106) FLOPs (109)

ResNet 34 [11] 26.69 8.58 21.80 3.6
ResNet 50 [11] 24.7 7.8 25.56 3.8
ResNet 50 (our) 23.87 7.12 25.56 3.8
ResNet 101 [11] 23.6 7.1 44.54 7.6
ResNet 101 (our) 22.63 6.45 44.54 7.6

Stochastic Depth ResNet 50 27.75 9.14 25.56 3.8
Stochastic Depth ResNet 101 22.80 6.44 44.54 7.6

ConvNet-AIG 50 soft gates [t=0.5] 24.42 7.30 25.56 2.95
ConvNet-AIG 50 soft gates [t=0.7] 23.69 6.89 44.54 3.37

st
o
c
h

a
st

ic

ConvNet-AIG 50 [t=0.4] 24.75 7.61 26.56 2.56
ConvNet-AIG 50 [t=0.5] 24.42 7.42 26.56 2.71
ConvNet-AIG 50 [t=0.6] 24.22 7.21 26.56 2.88
ConvNet-AIG 50 [t=0.7] 23.82 7.08 26.56 3.06
ConvNet-AIG 101 [t=0.3] 23.02 6.58 46.23 4.33
ConvNet-AIG 101 [t=0.5] 22.63 6.26 46.23 5.11

d
e
te

r
m

in
is

ti
c ConvNet-AIG 50 [t=0.4] 24.55 7.5 26.56 2.59

ConvNet-AIG 50 [t=0.5] 24.16 7.24 26.56 2.75
ConvNet-AIG 50 [t=0.6] 23.96 7.06 26.56 2.96
ConvNet-AIG 50 [t=0.7] 23.5 6.92 26.56 3.23
ConvNet-AIG 101 [t=0.3] 22.78 6.54 46.23 4.31
ConvNet-AIG 101 [t=0.5] 22.48 6.17 46.23 5.08

tation time. Interestingly, penalizing computation first

improves accuracy, before lowering the target rate fur-

ther decreases accuracy. This demonstrates that Con-

vNet-AIG both improves efficiency and overall classifi-

cation quality. Further, it appears often more effective

to decrease the target rate compared to reducing layers

in standard ResNets.

In Table 2, we also compare the two different train-

ing regimes, of (a) standard Gumbel-Softmax, where

softmax is applied during both forward and backward

pass and (b) Straight-Through Gumbel, where argmax

is performed during forward and softmax during back-

ward pass. Specifically, we compare performance for

ConvNet-AIG 50 with target-rates of 0.5 and 0.7. The

results show that the straight-through variant consis-

tently outperforms the standard Gumbel-Softmax. One

reason for the observed difference could be that, when

using softmax during the forward pass, although scaled

down, activations are always propagated through the

network, even if a gate decides that a layer is not rele-

vant for a given input image.

Lastly, due to surface resemblance, we also compare

our model to stochastic depth [16]. We observe that

for smaller ResNet models stochastic depth does not

provide competitive results. Only very large models see

benefits from stochastic depth regularization. The pa-

per on stochastic depth [16] reports that even for the

very large ResNet 152 performance remains below a ba-

sic ResNet. This highlights the opposite goals of Con-

vNet-AIG and stochastic depth. Stochastic depth aims

to create redundant features by enforcing each subset

of layers to model the whole dataset [32]. ConvNet-AIG

aims to separate parameters that are relevant to differ-

ent subsets of the dataset into different layers.

4.2.3 Evaluating gating thresholds during inference

During training, the gates are optimized for a threshold

of 0.5, i.e., argmax over the relevance scores. However,

there is some flexibility at test time to vary the thresh-

olds so as to adjust the trade-off between inference

time and classification quality. Figure 5 shows top-1 er-

ror on ImageNet and computational cost for ConvNet-

AIG 101 with target-rates 0.3 and 0.5 for thresholds

ranging from 0.1 to 0.9. The results show that vary-

ing the thresholds within the range of 0.3 to 0.7 allows

to slightly adjust inference time of an already trained

model without a large decrease in accuracy. However,

for larger adjustments to computation time it is more

effective to train a model with a different target rate.
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Fig. 6 Learned inference graphs on ImageNet. The histograms show for ConvNet-AIG 50 (left) and ConvNet-AIG 101
(right) how often each residual layer (x-axis) is executed for each of the 1000 classes in ImageNet (y-axis). We observe a clear
difference between layers used for man-made objects and for animals and even for some mid-level categories such as birds,
mammals and reptiles. Without specific supervision, the network discovers parts of the class hierarchy. Further, downsampling
layers and the last layers appear of key importance and are executed for all images. Lastly, the left histogram shows that early
layers are mostly agnostic to the different classes. Thus, we set early layers in ConvNet-AIG 101 to be always executed. The
remaining layers are sufficient to provide different inference graphs for the various categories.

4.2.4 Analysis of learned inference graphs

To analyze the learned inference graphs, we study the

rates at which different layers are executed for images

of different categories. Figure 6 shows the execution

rates of each layer for ConvNet-AIG 50 on the left and

ConvNet-AIG 101 on the right. The x-axis indicates

the residual layers and the y-axis breaks down the exe-

cution rates by the 1000 classes in ImageNet. Further,

the figure shows high-level and mid-level categories that

contain large numbers of classes. The color in each cell

indicates the percentage of validation images from a

given category that the respective layer is executed.

From the figure, we see a clear difference between

man-made objects and animals. Moreover, we even ob-

serve distinctions between mid-level animal categories

such as birds, mammals and reptiles. This reveals that

the network discovers part of the label hierarchy and

groups parameters accordingly. Generally, we observe

similar structures in ConvNet-AIG 50 and ConvNet-

AIG 101. However, the grouping of the mid-level cate-

gories is more distinct in ConvNet-AIG 101 due to the

larger number of layers that can capture high-level fea-

tures. This result demonstrates that ConvNet-AIG suc-

cessfully learns layers that focus on specific subsets of

categories. It is worthy to note that the training objec-

tive does not include an incentive to learn category spe-

cific layers. The specialization appears to emerge natu-

rally when the computational budget gets constrained.

Further, we observe that downsampling layers and

the last layers deviate significantly from the target rate

and are executed for all images. This demonstrates their

key role in the network (as similarly observed in [32])
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categories of birds, dogs and musical instruments. The examples illustrate how instance difficulty translates into layer usage.
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ers. For ConvNet-AIG 50 on ImageNet with target rate 0.4,
in average 10.8 out of 16 residual layers are executed. Images
of animals tend to use fewer layers than man-made objects.

and shows how ConvNet-AIG learns to effectively trade-

off computational cost for accuracy.

Lastly, the figure shows that for ConvNet-AIG 50,

inter-class variation is mostly present in the later layers

of the network after the second downsampling layer.

One reason for this could be that features from early

layers are useful for all categories. Further, early layers

might not yet capture sufficient semantic information

to discriminate between categories. Thus, we set the

target rate for the early layers of ConvNet-AIG 101 to 1

so that they are always executed. The remaining layers

still provide sufficient flexibility for different inference

paths for the various categories.

Figure 8 shows a typical trajectory of the execution

rates during training for ConvNet-AIG 50 with a target

rate 0.6 for all layers. The layers are initialized to exe-

cute a rate of 85% at the start of training. The figure

shows the first 30 training epochs and highlights how

the layers are quickly separated into key layers and less

critical layers. Important layers such as downsampling

and the last layers increase their execution rate, while

the remaining layers slowly approach the target rate.

4.2.5 Variable inference time

Due to the adaptive inference graphs, computation time

varies across images. Figure 9 shows the distribution

over how many of the 16 residual layers in ConvNet-

AIG 50 are executed over all ImageNet validation im-

ages. On average 10.81 layers are executed with a stan-

dard deviation of 1.11. The figure also highlights the

mid-level categories of birds and consumer goods. It

appears that in expectation, images of birds use one

layer less than images of consumer goods. From Fig-

ure 6 we further know that the two groups also use

different sets of layers. To get a better understanding

for what aspects impact inference time, Figure 7 shows

the validation images that use the fewest and the most

layers within the categories of birds, dogs and musi-

cal instruments. The examples highlight that easy in-

stances with iconic views require only a few layers. On

the other hand, difficult instances that are small or oc-

cluded need more computation.
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Fig. 10 Adversarial attack using Fast Gradient Sign Method. Left: ConvNet-AIG is consistently more robust than
the plain Resnet, independent of adversary strength. The additional robustness persists even when applying additional defense
mechanisms. Right: Average execution rates per layer for images of birds before and after the attack. The execution rates
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4.3 Robustness to adversarial attacks

In a third set of experiments we aim to understand

the effect of adaptive inference graphs on the suscep-

tibility towards adversarial attacks. Specifically, we are

interested in the ConvNet-AIG variant with stochastic

inference. While exhibiting slightly lower performance

compared to the deterministic counterpart, the stochas-

ticity of the inference graph might improve robustness

towards adversarial attacks.

We perform a Fast Gradient Sign Attack [8] on Con-

vNet-AIG 50 and ResNet 50, both trained on ImageNet.

The results are presented in Figure 10. In the graph

on the left, the x-axis shows the strength of the ad-

versary measured in the amount each pixel can to be

changed. The y-axis shows top-1 accuracy on ImageNet.

We observe that ConvNet-AIG is consistently more ro-

bust, independent of adversary strength. To investigate

whether this additional robustness complements other

defenses [10], we perform JPEG compression on the ad-

versarial examples. We follow [10] and use a JPEG qual-

ity setting of 75%. While both networks greatly benefit

from the defense, ConvNet-AIG remains more robust,

indicating that the additional robustness can comple-

ment other defenses. We repeat the experiment for de-

terministic inference and observe performance very sim-

ilar to the basic ResNet.

To understand the effect of the attack on the gates

and the robustness of stochastic inference, we look at

the execution rates before and after the attack. On the

right side, Figure 10 shows the average execution rates

per layer over all bird categories for ConvNet-AIG 50

before and after a FGSM attack with epsilon 0.047. Al-

though the accuracy of the network drops from 74.62%

to 11%, execution rates remain similar. Since the in-

creased robustness only appears during stochastic in-

ference, it seems that the reason for the gates’ resilience

is the added Gumbel noise which outweighs the noise

introduced by the attack.

5 Conclusion

In this work, we have shown that convolutional net-

works do not need fixed feed-forward structures. With

ConvNet-AIG, we introduced a ConvNet that adap-

tively assembles its inference graph on the fly based

on the input image. Specifically, we presented both a

stochastic as well as a deterministic mode to construct

the inference graph. Experiments on ImageNet show

that ConvNet-AIG groups parameters for related classes

into specialized layers and learns to only execute those

layers relevant to the input. This allows decoupling in-

ference time from the number of learned concepts and

improves both efficiency as well as overall classification

quality. In particular, this translates into 38% less com-

putations for ResNet 101 while achieving the same clas-

sification quality.

This work opens up numerous paths for future work.

With respect to network architecture, it would be in-

triguing to extend this work beyond ResNets to other

structures such as densely-connected [15] or inception-

based [30] networks. From a practitioner’s point of view,

it might be exciting to extend this work into a frame-

work where the set of executed layers is adaptive, but

their number is fixed so as to achieve constant inference

times. Further, we have seen that the gates are largely

unaffected by basic adversarial attacks. For an adver-

sary, it could be interesting to investigate attacks that

specifically target the gating functions.
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