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Abstract. There is an increasing concern in computer vision devices
invading users’ privacy by recording unwanted videos. On the one hand,
we want the camera systems to recognize important events and assist
human daily lives by understanding its videos, but on the other hand
we want to ensure that they do not intrude people’s privacy. In this
paper, we propose a new principled approach for learning a video face
anonymizer. We use an adversarial training setting in which two com-
peting systems fight: (1) a video anonymizer that modifies the origi-
nal video to remove privacy-sensitive information while still trying to
maximize spatial action detection performance, and (2) a discriminator
that tries to extract privacy-sensitive information from the anonymized
videos. The end result is a video anonymizer that performs pixel-level
modifications to anonymize each person’s face, with minimal effect on
action detection performance. We experimentally confirm the benefits
of our approach compared to conventional hand-crafted anonymization
methods including masking, blurring, and noise adding. Code, demo, and
more results can be found on our project page https://jason718.github.
io/project/privacy/main.html.

1 Introduction

Computer vision technology is enabling automatic understanding of large-scale
visual data and is becoming a crucial component of many societal applications
with ubiquitous cameras. For instance, cities are adopting networked camera
systems for policing and intelligent resource allocation, individuals are recording
their lives using wearable devices, and service robots at homes and public places
are becoming increasingly popular.

Simultaneously, there is an increasing concern in these systems invading the
privacy of their users; in particular, from unwanted video recording. On the
one hand, we want the camera systems to recognize important events and as-
sist human daily lives by understanding its videos, but on the other hand we
want to ensure that they do not intrude the people’s privacy. Most computer
vision algorithms require loading high resolution images/videos that can con-
tain privacy-sensitive data to CPU/GPU memory to enable visual recognition.
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Identity: ???
Action: Brush Teeth

Identity: Alex
Action: Brush Teeth

Fig. 1. Imagine the following scenario: you would like a personal assistant that can
alert you when your adorable child Alex performs undesirable actions, such as eating
mom’s make-up or drinking dirty water out of curiosity. However, you do not want your
personal assistant to record Alex’s face, because you are concerned about his privacy
information since the camera could potentially be hacked. Ideally, we would like a face
anonymizer that can preserve Alex’s privacy (i.e., make his face no longer recognizable
as Alex) while at the same time unaltering his actions. In this paper, our goal is to
create such a system. (Real experimental results.)

They sometimes even require network access to high computing power servers,
sending potentially privacy-sensitive images/videos. All these create a potential
risk of one’s private visual data being snatched by someone else. In the worst
case, the users are under the risk of being monitored by a hacker if their cam-
eras/robots at home are cracked. There can also be hidden backdoors installed
by the manufacturer, guaranteeing their access to cameras at one’s home.

To address these concerns, we need a principled way to ‘anonymize’ one’s
videos. Existing anonymization methods include extreme downsampling [38] or
image masking, as well as more advanced image processing techniques using
image segmentation [4]. Although such techniques remove scene details in the
images/videos in an attempt to protect privacy, they are based on heuristics
rather than being learned, and there is no guarantee that they are optimal
for privacy-protection. Moreover, they can hurt the ensuing visual recognition
performance due to loss of information [38]. Thus, a key challenge is creating
an approach that can simultaneously anonymize videos, while ensuring that the
anonymization does not negatively affect recognition performance; see Fig. 1.

In this paper, we propose a novel principled approach for learning the video
anonymizer. We use an adversarial training strategy; i.e., we model the learn-
ing process as a fight between two competing systems: (1) a video anonymizer
that modifies the original video to remove privacy-sensitive information while
preserving scene understanding performance, and (2) a discriminator that ex-
tracts privacy-sensitive information from such anonymized videos. We use hu-
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man face identity as the representative private information—since face is one of
the strongest cues to infer a person’s identity—and use action detection as the
representative scene understanding task.

To implement our idea, we use a multi-task extension of the generative adver-
sarial network (GAN) [11] formulation. Our face anonymizer serves as the gener-
ator and modifies the face pixels in video frames to minimize face identification
accuracy. Our face identifier serves as the discriminator, and tries to maximize
face identification accuracy in spite of the modifications. The activity detection
model serves as another component to favor modifications that lead to maximal
activity detection. We experimentally confirm the benefits of our approach for
privacy-preserving action detection on the DALY [52] and JHMDB [19] datasets
compared to conventional hand-crafted anonymization methods including mask-
ing, blurring, and noise adding.

Finally, although outside the scope of this work, the idea is that once we
have the learned anonymizer, we could apply it to various applications including
surveillance, smart-home cameras, and robots, by designing an embedded chipset
responsible for the anonymization at the hardware-level. This would allow the
images/videos to lose the identity information before they get loaded to the
processors or sent to the network for recognition.

2 Related work

Privacy-Preserving Recognition There are very few research studies on hu-
man action recognition that preserve identity information. The objective is to
remove the identity information of people appearing in ‘testing’ videos (which
is a bit different from protecting privacy of people in training data [1,57]), while
still enabling reliable recognition from such identity-removed videos.

Ryoo et al. [38] worked on learning of efficient low resolution video trans-
forms to classify actions from extreme low resolution videos. Chen et al. [7]
extended [50] for low resolution videos, designing a two-stream version of it.
Ryoo et al. [37] further studied the method of learning a better representation
space for such very low resolution (e.g., 16x12) videos. All these previous works
relied on video downsampling techniques which are hand-crafted and thus not
guaranteed to be optimal for privacy-preserving action recognition. Indeed, the
low resolution recognition performances of these works were much lower than
the state-of-the-art on high resolution videos, particularly for large-scale video
datasets. Jourabloo et al. [21] de-identify faces while preserving facial attributes
by fusing faces with similar attributes. It achieves impressive results on gray-
scale facial pictures with attribute annotations. However, it is specific to the
facial attribute setting and is not applicable to more general privacy-sensitive
tasks such as action recognition.

Action Detection Action recognition has a long research history [2]. In the
past several years, CNN models have obtained particularly successful results.
This includes two-stream CNNs [43,8] and 3-D XYT convolutional models [47,6]
for action classification, as well as models for temporal action detection [42,33].
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Our paper is related to spatial action detection from videos, which is the
task of localizing actions (with bounding boxes) in each video frame and catego-
rizing them. Recent state-of-the-art spatial action detectors are modified from
object detection CNNs models. Gkioxari and Malik [10] extend the R-CNN [9]
framework to a two-stream variant which takes RGB and flow as input. Wein-
zaepfel et al. [51] improved this method by introducing tracking-by-detection
to get temporal results. Two-stream Faster R-CNN [35] was then introduced
by [39,32]. Singh et al. [44] modified the SSD [25] detector to achieve real-time
action localization. In this work, we use Faster RCNN [35] as our frame-level
action detector.

Face Recognition Face recognition is a well-studied problem [59,23]. Recent
deep learning methods and large-scale annotated datasets have dramatically
increased the performance on this task [45,46,53,41,27,26]. Some approaches
treat it as a multi-class classification problem and use a vanilla softmax func-
tion [45,46]. Wen et al. [53] introduce the “center loss” and combine it with the
softmax loss to jointly minimize intra-class feature distance while maximizing
inter-class distance. The state-of-the-art approach of [41] uses the triplet loss
with hard instance mining but it requires 200 millions training images. Recent
work [27,26] demonstrate strong performance by combining metric learning with
classification. In this work, we use [26] as our face recognition module.

Network Attacking Our work is also closely related to the problem of network
attacking. Existing CNN based classifiers are easily fooled [54,5,12,28,30] even
when the input images are perturbed in an unnoticeable way to human eyes.
Correspondingly, there is also a line of work studying defense methods [12,31,55].
Our work is similar to network attacking methods since our modified images need
to attack a face identifier. However, the difference is that we want to dramatically
change the content, so that the identity is unrecognizable (even for humans),
while also optimizing it for action recognition.

Generative Adversarial Networks (GANs) GANs [11] have been proposed
to generate realistic images in an unsupervised manner. Since then, numerous
works [3,40,34] have studied ways to improve training of GANs to generate high-
quality and high-resolution images. It is currently the most dominant generative
model and the key to its success is the adversarial loss, which forces the gen-
erated data distribution to be indistinguishable from the real one. GANs have
been generalized and applied to various vision tasks such as image-to-image
translation [16], super resolution [24], domain adaptation [36], and object detec-
tion [49]. Recent work uses GANs to suppress user information in video features
for privacy [17], but it only focused on feature extraction without considering
modification of actual pixels in image data. In this paper, we extend the GAN
formulation to learn an explicit face modifier to anonymize each person’s face
without hurting action detection performance. Also, compared to image-to-image
translation, style transfer, and domain adaptation works, our network does not
require a target domain to borrow the visual style or content from.
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v M(rv)

Ladv

(v - rv)
v'

M(f)
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Ll1

Face
Detection

DAlign

A

Fig. 2. Our network architecture for privacy-preserving action detection. We simulta-
neously train a face modifier M whose job is to alter the input face (f or rv) so that
its identity no longer matches that of the true identity, and an action detector A whose
job is to learn to accurately detect actions in videos in spite of the modifications. The
face classifier D acts as an adversary and ensures that the modified face is non-trivial.
See text for details. (Gray blobs are not learned during training.)

3 Approach

Given a set of training videos V and face images F , our goal is to learn a face
modifier that anonymizes each person in the video frames and images (i.e., so
that they cannot be correctly recognized by a face recognition system) while
simultaneously training an action detector that can detect each person’s action
in spite of the modification. We formulate the problem as a multi-task learning
objective. The overall framework is depicted in Fig. 2. There are three major
learnable components: the modifier M which takes a face image as input and
anonymizes it, an action detector A which detects the actions of the people in
each video frame, and a face classifier D that classifies the identity of each face.

There are two main advantages in using both videos and images for training.
First, we can leverage existing large-scale labeled face datasets to learn identity
information. Second, we can train our model on action detection datasets that
do not have any identity annotations. In other words, we do not need to create a
new specific dataset to train our model, but instead can leverage the (disparate)
datasets that were created for face recognition and action detection without any
additional annotations.

We next introduce the loss functions and then explain the training procedure.
The implementation details are given at the end.

3.1 Formulation

Our loss for training the model consists of three parts: an adversarial classifica-
tion loss for identity modification; an action detection loss for training the action
detector; and an L1 loss to encourage each generated image to preserve as much
structure (pose, brightness, etc.) of the original unmodified face as possible.

Action Detection Loss Given an input frame from video dataset v ∈ V , we
first apply a face detector to get face region rv. We then feed rv into the modifier
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M and replace rv with the resulting modified image M(rv) in the original frame
to get v′ = v− rv +M(rv). In other words, the frame is identical to the original
frame except that the face of the person has been modified. (If there are multiple
people in the frame, we repeat the process for each detected person’s face.)

The per-frame action detector is trained using the modified frame v′, and
ground-truth action bounding boxes {bi(v)} and corresponding action category
labels {ti(v)}. Specifically, the detection loss is defined as:

Ldet(M,A, V ) = Ev∼V [LA(v′, {bi(v)}, {ti(v)})] (1)

where LA is the sum of the four losses in Faster-RCNN [36]: RPN classification
and regression, and Fast-RCNN classification and regression. We choose Faster-
RCNN as it is one of the state-of-the-art object detection frameworks that has
previously been used for spatial action detection successfully (e.g., [39,32]).

Adversarial Classification Using a state-of-the-art face classifier, we can
easily achieve high face verification accuracy [27,26]. In particular, we use the
face classifier formulation of [26] to be the target discriminator for our setting.
In order to fool it, our modifier M needs to generate a very different-looking
person. Simultaneously, the face classifier D should continuously be optimized
with respect to the anonymized faces M(f), so that it can correctly identify the
face despite any modifications. Our D is initialized with pre-trained parameters
learned from large-scale face datasets.

We use an adversarial loss to model this two-player game [11]. Specifically,
during training, we take turns updating M and D. Here, we denote the input
image from the face dataset as f ∈ F and the corresponding identity label as
if ∈ I. The loss is expressed as:

Ladv(M,D,F ) = −E(f∼F,if∼I)[LD(M(f), if )]− E(f∼F,if∼I)[LD(f, if )]. (2)

Here the classification loss LD is the angular softmax loss [26], which has been
shown to be better than vanilla softmax via its incorporation of a metric learn-
ing objective. When updating M this loss is minimized, while when updating
D it is maximized. This simultaneously enforces a good modifier to be learned
that can fool the face classifier (i.e., make it classify the modified face with the
wrong identity), while the face classifier also becomes more robust in dealing
with the modifications to correctly classify the face despite the modifications.
Furthermore, we optimize D for face classification using both the modified im-
ages M(f) and the original images f . We find that this leads to the modifier
producing faces that look very different from the original faces, as we show in
the experiments.

Photorealistic Loss We use an L1 loss to encourage the modified image to
preserve the basic structure (pose, brightness, etc.) of the original picture. The
L1 loss was previously used in image translation work [16,60] to force visual
similarity between a generated image and the input image. Although this loss
does not directly contribute to our goal of privacy-preserving action detection,
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Algorithm 1 Privacy Preserving Action Detection

Input: Video frames V and action labels; Face images F and identity labels; Face
classifier D; Training iteration T1, T2

Output: Face modifier M ; Privacy preserving action detector A

1: for t = 1 to T1 do
2: M(f)→ f ′ // Face modification
3: arg maxD Ladv(M,D,F ) // Update D
4: det face(v)→ rv // Face detection
5: if #faces in frame > 0 // Video frame modification
6: M(rv)→ r′v, (v − rv) + r′v → v′

7: else // No Faces to modify
8: v → v′

9: arg minM,A Ldet(M,A, V ) + Ladv(M,D,F ) + λ Ll1(M,F ) // Update M,A

10: for τ = 1 to T2 do
11: arg minA Ldet(M,A, V ) // Freeze M,D; Update A

we add it because we want the modified image to retain enough scene/action
information that can also be recognizable by a human observer. At the same
time since we want to ensure enough modification so that the person’s identity
is no longer recognizable, we use a weight λ and set its value to be relatively
small to avoid making the modified image look too similar to the original one:

Ll1(M,F ) = Ef∼F [ λ ||M(f)− f ||1] (3)

Full Objective Our full objective is:

L(M,D,A, V, F ) = Ldet(M,A, V ) + Ladv(M,D,F ) + Ll1(M,F ) (4)

We aim to solve:
arg min

M,A
max
D

L(M,D,A, V, F ) (5)

Our algorithm’s pseudo code for learning is shown in Alg. 1. There are two things
to note: (1) if there are no frontal faces in a frame (due to occlusion or if the
person is facing away from the camera), we use the original, unmodified frame
to train the action detector; (2) During training, we update the face classifier,
modifier, and action detector iteratively. Therefore, the input image to the action
detector keeps changing, which can make its optimization difficult and unstable.
To overcome this, once the loss terms for the modifier and face classifier converge,
we fix the modifier and face classifier and only fine-tune the action detector. A
similar training procedure is used for our baseline approaches in Section 5, with
the only difference being the modification procedure.

4 Implementation

Face Detection We use SSH [29] face detector to detect faces in our video
dataset, which produces high recall but with some false positives. Therefore,
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we keep the detections with probability greater than 0.8 and feed the rest into
the MTCNN [58] face detector to remove false positives by using it as a binary
classifier. After these two steps, we get a clean and highly-accurate set of face
bounding boxes.

Face Modification We adapt the architecture for our modifier from Johnson
et al. [20], which has demonstrated impressive image translation performance
on various datasets by Zhu et al. [60]. We use the 9 residual blocks network
and instance normalization [48]. The input images are upsampled or sampled to
256× 256 via bilinear interpolation.

Spatial Action Detection We use Faster-RCNN [35] with ResNet-101 [14] as
the backbone network for action detection and train it end-to-end. Images are
resized so that the shorter length is 340 pixels for JHMDB and 600×800 pixels
for DALY following Gu et al. [13].

Face Identity Classification We use the SphereFace-20 [26] network, which
combines metric learning and classification to learn a discriminative identity
classifier. We use the CASIA-WebFace pretrained [56] model for initialization.
The input face images are aligned and cropped using facial keypoints. We use a
differentiable non-parametric grid generator and sampler for cropping (similar
to the warping procedure in Spatial Transformer Networks [18] except there are
no learnable parameters) to make our whole network end-to-end trainable.

Training Details We use the Adam solver [22], with momentum parameters
β1 = 0.5, β2 = 0.999. A learning rate of 0.001 for Faster RCNN, 0.0003 for face
modifier and face classifier. We train the entire network for 12 epochs and drop
the learning rate by 1

10 after the seventh epoch.

5 Results

In this section, we first provide details on the evaluation metrics and datasets,
and then explain the baseline methods. We then evaluate our method’s per-
formance both quantitatively and qualitatively. In addition, we conduct a user
study to verify whether the modified photos can fool human subjects. Finally, we
perform ablation studies to dissect the contribution of each model component.

5.1 Metrics and Datasets

Action Detection We measure detection performance using the standard mean
Average Precision (mAP) metric. The IoU threshold δ is set to 0.5 when measur-
ing spatial localization. We use two datasets: DALY [52] and JHMDB (split1) [19],
as they contain a number of actions that involve the face area and thus are
good testbeds for our joint face anonymization and action detection model. For
example, some of the action classes have similar body movement and hand mo-
tions near the head (taking photos, phoning, brushing hair) or mouth (drinking,
brushing teeth, playing harmonica, applying make up on lips).
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Blurred (8x8) Noised (σ2=0.5)
Both: brush teeth

Masked
Left: playing harmonica

Edge
Applying make-up on lips

Super-Pixel
PhoningPlaying harmonica

Fig. 3. Baseline modification examples. Although these methods largely conceal the
true identity, they can also be detrimental to action detection performance especially
if the action involves the facial region. (Zoom in for details, better viewed in pdf.)

Face Recognition Following previous works [27,26], we measure face recog-
nition performance by training our model on face classification and evaluat-
ing on binary face verification. CASIA-WebFace [56] is used for training and
the input images are aligned and cropped using the facial keypoints estimated
by MTCNN [58]. During testing, we extract the features after the last fully-
connected layer and then compute cosine similarity for face verification on LFW
[15], one of the most popular face datasets for this task. Note that here our
motivation is not to create a new face recognition model but rather to use an
established method as an adversary for our adversarial setting.

5.2 Baselines

One straightforward and brute force solution to address privacy concerns is to
detect faces and modify them using simple image processing methods such as
blurring, masking, and additive noise, etc. To explore whether they are viable
solutions, we use several of them as our baselines and evaluate their performance
on both action detection and face recognition. For action detection, the detected
face boxes are enlarged by 1.6× to ensure that they include most of the head
region, and then are modified. This enlargement also helps the video face region
rv be more similar to the face image f , which has some background context (see
examples in Fig. 5 top).

We want to ensure that the baseline face anonymization methods are strong
enough to preserve privacy (i.e., make the original face identity unrecognizable to
humans). With this motivation, we implemented the following methods: (1) Un-
anonymized: no protection is applied; (2) Blur: following Ryoo et al. [38], we
downsample the face region to extreme low-resolution (8×8, 16×16, 24×24) and
then upsample back; (3) Masked: the faces are masked out; (4) Noise: strong
Gaussian noise is added (σ2 = 0.1, 0.3, 0.5); (5) Super-pixel: following [4], we
use superpixels and replace each pixel’s RGB value with its superpixel’s mean
RGB value; (6) Edge: following [4], face regions are replaced by their corre-
sponding edge map. Example modifications are shown in Fig. 3.

Fig. 4 shows action detection accuracy (y-axis) vs. face verification error
(x-axis) for the baselines, with JHMDB results on left and DALY results on
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Fig. 4. x-axis is face verification error and y-axis is action detection mAP. The closer
a model’s performance is to the top-right corner, the better. Left: JHMDB; Right:
DALY.

right. As expected, the baselines greatly increase face recognition error (and
thus improving anonymization) compared to the original un-anonymized frames.
However, at the same time, they also harm action detection performance on
both DALY and JHMDB. These results indicate that simple image processing
methods are double-edged swords; although they may be able to protect privacy
(to varying degrees), the protection comes with the negative consequence of poor
action recognition performance.

5.3 Quantitative Results

Overall Performance Fig. 4 also shows ours results indicated by the red
square maker. Our method simultaneously optimizes on both tasks and achieves
better results compared to the baselines. As two extreme one-sided solutions, the
‘Un-anonymized’ (top-left) and ‘Masked’ (bottom-right) baselines can only ad-
dress either action detection or face verification. Our action detection results are
significantly better than others while being quite close to the un-anonymized de-
tection results. For face verification, our method is only worse than two baselines
(8× 8 down-sampling and masking) but outperforms the others.

Per Class Accuracy As described earlier, there are certain actions that are
more influenced by face modification. Therefore, we next investigate per-class
detection results to closely analyze such cases. As shown in Table 1, we find that
our model boosts action detection accuracy with a bigger margin compared to
the baselines if the actions are ‘drinking’, ‘phoning’, ‘playing harmonica’, and
‘taking photos or videos’. This result makes sense since these actions involve
the face areas and our approach best preserves the original pictures’ semantics.
Our model only marginally improves over or performs worse for ‘cleaning floor’,
‘cleaning windows’, ‘ironing’ because these actions have almost nothing to do
with faces. Overall, these results indicate that our model modifies each face in a
way that ensures high action detection performance.
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Action Lip Brush Floor Window Drink Fold Iron Phone Harmonica Photo mAP
Un-anonymized 92.30 51.26 76.73 27.87 31.23 32.67 75.30 51.50 73.91 55.74 56.85

Blur(8x8) 84.31 17.87 79.39 27.77 6.60 28.68 71.69 28.40 31.13 48.09 42.39
Blur(16x16) 82.07 32.40 79.53 32.14 10.74 31.35 74.91 36.97 48.37 52.51 48.10
Blur(24x24) 92.08 39.84 79.93 31.77 15.23 34.96 74.65 46.33 51.78 53.09 51.97

Noise(σ2 = 0.1) 87.71 31.37 78.41 31.87 12.41 34.80 76.50 42.37 50.14 53.48 49.91
Noise(σ2 = 0.3) 87.64 24.98 78.59 32.68 8.34 35.33 74.96 40.12 36.61 45.42 46.47
Noise(σ2 = 0.5) 83.63 21.45 81.32 29.59 7.43 29.08 77.97 33.93 27.35 46.35 43.81

Masked 67.06 15.19 78.86 26.58 6.59 25.53 72.95 27.79 21.32 46.76 38.86
Edge 80.30 29.46 78.02 30.51 10.31 32.64 79.15 35.15 54.69 49.62 47.99

Super-Pixel 79.47 26.09 80.82 32.22 11.46 35.29 77.70 30.30 42.18 53.68 46.92
Ours 89.20 33.08 77.12 32.56 22.93 33.86 77.07 46.52 55.32 55.54 52.32

Table 1. Action detection accuracy on DALY. ‘Lip’, ‘Brush’, ‘Floor’, ‘Window’,
‘Drink’, ‘Fold’, ‘Iron’, ‘Phone’, ‘Harmonica’, ‘Photo’, denote category ‘applying make-
up on lips’, ‘brushing teeth’, ‘cleaning floor’, ‘cleaning windows’, ‘drinking’, ‘folding
textile’, ‘ironing’, ‘phoning’, ‘playing harmonica’, ‘taking photos or videos’.

5.4 Qualitative Results

Same picture before and after modification We next show examples of
pictures before and after modification in Fig. 5. The first four rows show im-
ages from the face dataset, while the bottom two rows show images from the
video dataset. Overall, we can see that our modifier generates realistic pictures
that change the person’s identity. Importantly, the basic structure (pose, cloth-
ing, background) and the actions (brushing teeth, playing harmonica, putting
makeup on lips) are preserved, showing the contribution of the L1 and action
detection losses.

To change the person’s identity, our network tends to focus more on local
details. For example, in the first row, our model changes the gender; in the third
row, the hair style (baldness and color) is changed; in the fourth row, facial
details like nose, eye glasses, and eyebrow get modified. We can make the same
observation for the video frame results: the two teeth brushing teenagers become
older; the ethnicity of the woman who is putting makeup on her lips changes.

Different modified pictures of the same person Here we explore how
our model modifies different face images of the same person. This is to answer
whether our model first recognizes the person and then systematically changes
his/her identity, or whether it changes the identity in a more stochastic manner.

Fig. 6 shows the results. The set of original images (prior to modification;
not shown here) in each row all have the same identity. The first four rows
show modified images of: Jackie Chan, Leonardo DiCaprio, Serena Williams,
and Vladimir Putin. The bottom two rows show different modified frames of
the same person in the same video. Given the consistency in the modifications
for the same person (i.e., the modified faces look similar), it appears that our
model is recognizing the identity of the person and systematically modifying it to
generate a new identity. This result is surprising because there is nothing in our
objective that forces the model to do this; one hypothesis is that this happens
because we are using gradient ascent to maximize face classification error and it
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Fig. 5. The same image before and after anonymization. The picture on the left of
each pair is the original image, and the one on the right is the modified image. The
first four rows are from the face dataset; the bottom two are from the video dataset.

is an easier optimization to reshape the face identity manifold in a systematic
way compared to perturbing each face instance separately.

5.5 User study

We conducted a very simple user study to investigate how well our modifier can
fool humans. We designed three questions: (Q1) We sample a pair of modified
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Vladimir 
Putin

Serana
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Fig. 6. Anonymized images. Top: different modified pictures of the same person; Bot-
tom: different modified frames in the same video.

images from the testing set and ask our subjects whether the pair corresponds to
the same person. We collect 12 positive pairs and 12 negative pairs. (Q2) We use
our model to modify 16 famous celebrities in LFW (who are not in our training
data) and ask our subjects to name them or say ‘no idea’. (Q3) We display a set
of modified images, and ask our subjects if they think this technology is good
enough to protect their own privacy.
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In total, we collected 400 answers from 10 different subjects. The overall
accuracy for Q1 is 53.3%, which is close to random guessing (50%). For Q2,
among the celebrities they know, our subjects could only name 19.75% of them
correctly based on the modified images. Finally for Q3, all subjects except 2
responded that they felt their identity information would be protected if they
were to use this technology.

5.6 Ablation Study

Does the face classifier remain accurate? During the training process, we
observed that the generator (i.e., modifier) tends to “win” over the discriminator
(i.e., face classifier). This raises the concern that our face classifier may no longer
be robust enough to correctly classify an unmodified face. To answer this, we
take the trained face classifier and evaluate it on the original un-anonymized
LFW faces. The classifier’s features produce 94.75% verification accuracy. On
modified LFW faces, they only achieve 66.95%. This shows that the classifier
can still accurately recognize the original faces despite being “fooled” by the
modified faces.

Gradient ascent or use random label when optimizing M? Inspired
by existing network attacking works [54,5,12,28,30], we can also optimize our
modifier so that it fools the classifier to classify the modified image as a random
face category. (In our approach, as shown in Alg. 1, we instead perform gradient
ascent to maximize classification loss.) In practice, we find that random negative
sample optimization produces much worse results where the resulting generated
faces have obvious artifacts and lose too much detail.

One possible explanation for this is that the optimization for this baseline is
much harder compared to gradient ascent (i.e., maximizing classification error
for the correct identity). Here, the optimization target keeps changing randomly
during training, which leads to the entire network suffering from mode collapse.
Thus, it simply produces a consistent blur regardless of the original identity. In
contrast, gradient ascent makes the modified image still look like a face, only
with a different identity.

6 Conclusion

We presented a novel approach to learn a face anonymizer and activity detector
using an adversarial learning formulation. Our experiments quantitatively and
qualitatively demonstrate that the learned anonymizer confuses both humans
and machines in face identification while producing reliable action detection.
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