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Abstract. As an agent moves through the world, the apparent motion of scene
elements is (usually) inversely proportional to their depth.1 It is natural for a
learning agent to associate image patterns with the magnitude of their displace-
ment over time: as the agent moves, faraway mountains don’t move much; nearby
trees move a lot. This natural relationship between the appearance of objects and
their motion is a rich source of information about the world. In this work, we start
by training a deep network, using fully automatic supervision, to predict relative
scene depth from single images. The relative depth training images are automat-
ically derived from simple videos of cars moving through a scene, using recent
motion segmentation techniques, and no human-provided labels. This proxy task
of predicting relative depth from a single image induces features in the network
that result in large improvements in a set of downstream tasks including semantic
segmentation, joint road segmentation and car detection, and monocular (abso-
lute) depth estimation, over a network trained from scratch. The improvement on
the semantic segmentation task is greater than those produced by any other au-
tomatically supervised2 methods. Moreover, for monocular depth estimation, our
unsupervised pre-training method even outperforms supervised pre-training with
ImageNet. In addition, we demonstrate benefits from learning to predict (again,
completely unsupervised) relative depth in the specific videos associated with
various downstream tasks (e.g., KITTI). We adapt to the specific scenes in those
tasks in an unsupervised manner to improve performance. In summary, for se-
mantic segmentation, we present state-of-the-art results among methods that do
not use supervised pre-training, and we even exceed the performance of super-
vised ImageNet pre-trained models for monocular depth estimation, achieving
results that are comparable with state-of-the-art methods.

Keywords: self-supervised learning, unsupervised domain adaptation, urban scene
understanding, semantic segmentation, monocular depth estimation

1 Introduction

How does a newborn agent learn about the world? When an animal (or robot) moves,
its visual system is exposed to a shower of information. Usually, the speed with which

1 Strictly speaking, this statement is true only after one has compensated for camera rotation,
individual object motion, and image position. We address these issues in the paper.

2 We refer to our method as automatically supervised or self-supervised when we want to empha-
size that training data was obtained automatically. At other times, we refer to it as unsupervised
to emphasize that it uses no human supervision.
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(a) (b) (c) (d) (e)

Fig. 1: Sample frames from collected videos and their corresponding relative depth
maps, where brightness encodes relative depth (the brighter the further). From top to
bottom: input image, relative depth image computed using Eq.(3), and predicted (rel-
ative) depth maps using our trained VGG16 FCN8s [1,2]. There is often a black blob
around the center of the image, a singularity in depth estimation caused by the focus of
expansion. (a)(b)(c): images from the CityDriving dataset, (d): images from the KITTI
dataset, and (e): images from the CityScapes dataset.

something moves in the image is inversely proportional to its depth.1 As an agent con-
tinues to experience visual stimuli under its own motion, it is natural for it to form
associations between the appearance of objects and their relative motion in the im-
age. For example, an agent may learn that objects that look like mountains typically
don’t move in the image (or change appearance much) as the agent moves. Objects like
nearby buildings and bushes, however, appear to move rapidly in the image as the agent
changes position relative to them. This continuous pairing of images with motion acts
as a kind of automatic supervision that could eventually allow an agent both to under-
stand the depth of objects and to group pixels into objects by this predicted depth. Thus,
by moving through the world, an agent may learn to predict properties (such as depth)
of static scenes.

A flurry of recent work has shown that proxy tasks (also known as pretext or surro-
gate tasks) such as colorization [3,4], jigsaw puzzles [5], and others [6,7,8,9,10,11,12,13],
can induce features in a neural network that provide strong pre-training for subsequent
tasks. In this paper, we introduce a new proxy task: estimation of relative depth from
a single image. We show that a network that has been pre-trained, without human su-
pervision, to predict relative scene depth provides a powerful starting point from which
to fine-tune models for a variety of urban scene understanding tasks. Not only does
this automatically supervised starting point outperform all other proxy task pre-training
methods. For monocular depth understanding, it even performs better than the heavily
supervised ImageNet pre-training, yielding results that are comparable with state-of-
the-art methods.

To estimate relative scene depths without human supervision, we resort to a recent
motion segmentation technique [14] to estimate relative depth from geometric con-
straints between scene’s motion field and camera motion. We apply it to simple, pub-
licly available YouTube videos taken from moving cars. Since this technique estimates
depth up to an unknown scale factor, we compute relative depth of the scene during the
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pre-training phase, where each pixel’s value is in the range of [0, 1] denoting its depth
percentile over the entire image.3

Unlike work that analyzes video paired with additional information about direction
of motion [15], our agent learns from “raw egomotion” video recorded from cars mov-
ing through the world. Unlike methods that require videos of moving objects [8], we
neither depend on, nor are disrupted by, moving objects in the video. Once we have
relative depth estimates for these video images, we train a deep network to predict the
relative depth of each pixel from a single image, i.e., to predict the relative depth with-
out the benefit of motion. One might expect such a network to learn that an image patch
that looks like a house and spans 20 pixels of an image (about 100 meters away) is sig-
nificantly further away than a pedestrian that spans 100 image pixels (perhaps 10 meters
away). Figure 1 illustrates this prediction task and shows sample results obtained using
a standard convolutional neural network (CNN) in this setting. For example, in the left-
most image of Fig. 1, an otherwise unremarkable traffic-light pole is clearly highlighted
by its relative depth profile, which stands out from the background. Our hypothesis is
that to excel at relative depth estimation, the CNN will benefit by learning to recognize
such structures.

The goal of our work is to show that pre-training a network to do relative depth
prediction is a powerful proxy task for learning visual representations. In particular, we
show that a network pre-trained for relative depth prediction (from automatically gener-
ated training data) improves training for downstream tasks including semantic segmen-
tation, joint semantic reasoning of road segmentation and car detection, and monocular
(absolute) depth estimation. We obtain significant performance gains on urban scene
understanding benchmarks such as KITTI [16,17] and CityScapes [18], compared to
training a segmentation model from scratch. Compared to nine other proxy tasks for
pre-training, our proxy task consistently provides the highest gains when used for pre-
training. In fact, our performance on semantic segmentation and joint semantic reason-
ing tasks comes close to that of equivalent architectures pre-trained with ImageNet [19],
a massive labeled dataset. Finally, for the monocular (absolute) depth estimation, our
pre-trained model achieves better performance than an ImageNet pre-trained model,
using both VGG16 [1] and ResNet50 [20] architectures.

As a final application, we show how our proxy task can be used for domain adap-
tation. One might assume that the more similar the domain of unlabeled visual data
used for the proxy task (here, three urban scene understanding tasks) is to the domain
in which the eventual semantic task is defined (here, semantic segmentation), the better
the representation learned by pre-training. This observation allows us to go beyond sim-
ple pre-training, and effectively provide a domain adaptation mechanism. By adapting
(fine-tuning) a relative depth prediction model to targets obtained from unlabeled data
in a novel domain (say, driving in a new city) we can improve the underlying represen-
tation, priming it for better performance on a semantic task (e.g., segmentation) trained
with a small labeled dataset from this new domain. In experiments, we show that pre-
training on unlabeled videos from a target city, absent any labeled data from that city,
consistently improves all urban scene understanding tasks.

3 Later, we will fine-tune networks to produce absolute depths.
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In total, our work advances two pathways for integrating unlabeled data with visual
learning.

– We propose a novel proxy task for self-supervised learning of visual represen-
tations; it is based on learning to predict relative depth, inferred from unlabeled
videos. This unsupervised pre-training leads to better results over all other proxy
tasks on the semantic segmentation task, and even outperforms supervised Ima-
geNet pre-training for absolute depth estimation.

– We show that our task can be used to drive domain adaptation. Experiments demon-
strate its utility in scene understanding tasks for street scenes in a novel city. Our
adapted model achieves results that are competitive with state-of-the-art methods
(including those that use large supervised pre-training) on the KITTI depth estima-
tion benchmark.

Such methods of extracting knowledge from unlabeled data are likely to be increasingly
important as computer vision scales to real-world applications; here massive dataset size
can outpace herculean annotation efforts.

2 Related Work

Self-supervised learning. The idea of formulating supervised prediction tasks on un-
labeled data has been leveraged for both images and videos. The idea, often called self-
supervision, is most typically realized by removing part of the input and then training
a network to predict it. This can take the form of deleting a spatial region and trying to
inpaint it [10], draining an image of color and trying to colorize it [21,4,3], or removing
the final frame in a sequence and trying to hallucinate it [22,23,24,25,26,27]. Generative
Adversarial Networks, used for inpainting and several future frame prediction methods,
can also be used to generate realistic-looking samples from scratch. This has found sec-
ondary utility for unsupervised representation learning [28,29,30]. Another strategy is
to extract patches and try to predict their spatial or temporal relationship. In images,
this has been done for pairs of patches [31] or for 3-by-3 jigsaw puzzles [5]. In videos,
it can be done by predicting the temporal ordering of frames [9,13]. The correlation of
frames in video is also a rich source of self-supervised learning signals. The assumption
that close-by frames are more similar than far apart frames can be used to train embed-
dings on pairs [32,33,34] or triplets [6] of frames. A related idea that the representation
of interesting objects should change slowly through time dates back to Slow Feature
Analysis [35].

The works most closely related to ours may be [15,7,8], which aim to learn use-
ful visual representations from unlabeled videos as well. Jayaraman & Grauman [15]
learn a representation equivariant to ego-motion transformations, using ideas from met-
ric learning. Agrawal et al. [7] concurrently developed a similar method that uses the
ego-motion directly as the prediction target as opposed to as input to an equivariant
transformation. Both of these works assume knowledge of the agent’s own motor ac-
tions, which limits their evaluation in sample size due to lack of publicly available data.
In our work, the ego-motion is inferred through optical flow, which means we can lever-
age large sources of crowd-sourced data, such as YouTube videos. Pathak et al. [8] use
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optical flow and a graph-based algorithm to produce unsupervised segmentation maps.
A network is then trained to approximate these maps, driving representation learning.
The reliance on moving objects, as opposed to a moving agent, could make it harder to
collect good data. Using a method based on ego-motion, the agent can promote its own
representation, learning simply by moving, instead of having to find objects that move.

There is also work on using multi-modal sensory input as a source of supervision.
Owens et al. [12] predict statistics of ambient sounds in videos. Beyond studying a
single source of self-supervision, combining multiple self-supervision sources is in-
creasingly popular. In [36], a set of self-supervision tasks are integrated via a multi-task
setting. Wang et al. [37] propose to combine instance-level as well as category-level
self-supervision. Both [36,37] achieve better performance than a single model.
Unsupervised learning of monocular depth estimation. A single-image depth predic-
tor can be trained from raw stereo images, by warping the right image with a depth map
predicted from the left image and train it to reconstruct the left image [38,39]. This idea
was extended in recent work to support fully self-supervised training on regular video,
by predicting both depth and camera pose difference for pairs of nearby frames [40,41].

Although [40,41] are closely related to our work in the sense of unsupervised (or
self-supervised) learning depth and ego-motion from unlabeled videos, our work dif-
fers from them in two ways. First, neither of these two works emphasizes more general-
purpose feature learning. Second, neither of them demonstrates their scalability to large-
scale YouTube videos. [40] requires intrinsic camera parameters that are not available
for most YouTube videos; our approach relies on optical flow only. [41] only reports
experimental results on standard benchmark datasets, whose scale is an order of mag-
nitude smaller than videos we use. It is unclear whether the heuristics (e.g., the manu-
ally set camera intrinsic parameters, number of motion clusters) are robust to YouTube
videos in the wild.

3 Inducing features by learning to estimate relative depth

As a proxy task, our goal is to induce a feature representation f(I) of an RGB image
I(x, y) by predicting its depth image z(x, y), where the representation f(I) could be
transferred to other downstream tasks (e.g., semantic segmentation) with fine-tuning.
In section 3.1, we introduce technical details of gathering images and corresponding
depth maps. In section 3.2, we provide details of training CNNs to learn the feature
representation f(I).

3.1 Self-Supervised Relative Depth

As described above, we automatically produce depth images for video frames by an-
alyzing the motion of pre-existing videos. In our experiments, we used three sets of
videos: YouTube videos, videos from the KITTI database [16,17], and videos from the
CityScapes database [18]. The YouTube videos consist of 135 videos taken from mov-
ing cars in major U.S. cities.4 We call this dataset CityDriving. The stability of the
camera in these videos makes them relatively easy for the depth estimation procedure.

4 They are crawled from a YouTube playlist, taking less than an hour.
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Some of the videos are extremely long, lasting several hours. The CityDriving dataset
features a large number of man-made structures, pedestrians and cars. Following [42],
we only keep two consecutive frames if they have moderate motion (i.e., neither too
slow nor too fast). To eliminate near duplicate frames, two consecutive depth maps
must be at least 2 frames apart. We keep only the first one of two consecutive frames
and the computed depth image. In total, we gathered 1.1M pairs of RGB images and
their corresponding depth maps, where the typical resolution is 640×360. Similarly, we
collect 30K and 24K pairs of RGB images and their relative depth maps for CityScapes
and KITTI, respectively.

Denote the instantaneous coordinates of a pointP in the environment by (X,Y, Z)T ,
and the translational velocity of the camera in the environment by (U, V,W )T . Let the
motion field component (idealized optical flow) of the point P (in the image plane)
be (u, v), corresponding to the horizontal and vertical image motion, respectively. The
motion field can be written as the sum of translation and rotation components5

u = ut + ur, v = vt + vr, (1)

where the subscript t and r denote translation and rotation, respectively. According to
the geometry of perspective projection [43], the following equations hold if the motion
of the camera is purely translational,

ut =
−U + xW

Z
, vt =

−V + yW

Z
, (2)

where x and y are the coordinates of the point P in the image plane (the origin is at the
image center).

Note that the depth Z can be estimated from either one of these equations. However,
the estimate can be unstable if either ut or vt is small. To obtain a more robust estimate
of Z, we square the two equations above and add them:

Z =

√
(−U + xW )2 + (−V + yW )2

u2t + v2t
. (3)

Because we can only recover (U, V,W )T up to scale (see below), we can only compute
the depth map of an image up to scale. To induce feature representations, we use depth
orderings of pixels in an image. We compute the relative depth z ∈ [0, 1] of the pixel P
as its depth percentile (divided by 100) across all estimated depth values for the image.
Since these percentiles are invariant to the velocity’s unknown scale, we do not need to
recover the absolute scale of velocity. Examples of these automatically obtained depth
maps are given in Figure 1 and Figure 2.

To compute the optical flow, we use the state-of-the-art unsupervised method [44].
It first computes sparse pixel matchings between two video frames. It then interpolates
to get dense pixelwise optical flow fields from sparse matchings, where we replace the
supervised edge detector [45] with its unsupervised version [42]. Based on the optical

5 Any motion in the image is due to the relative motion of a world point and the camera. This
addresses motion of the object, the camera, or both.
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Fig. 2: Samples of image pairs and computed translational optical flow that we use to
recover the relative depth. From left to right: first images, second images, translational
optical flow between input two images, and relative depth of the first images.

flow, we use the method proposed in [14] to recover the image motion of each pixel due
to translational motion only (ut, vt), and also, the global camera motion (U, V,W )T up
to an unknown scale factor. Specifically, the rotation of the camera can be estimated by
finding the rotation such that the remaining motion, by removing the rotational com-
ponent from the motion field, can be well-explained by angle fields, which are the an-
gle part of the motion field. This procedure produces a translational optical flow field
(ut, vt), and a set of regions in the image corresponding to the background and different
object motions, along with the motion directions (U, V,W ) of those regions. We refer
readers to [14] for more technical details.

In summary, to obtain the depth map of each frame from a video, we:

– compute the optical flow (u, v) between a pair of frames [44];
– estimate the translational component (ut, vt) of the optical flow and the direction

of camera translation (U, V,W ) from the optical flow, using the method of [14];
– estimate the scene depth Z using Eq. 3, up to an unknown scale factor, from the

translational component of the optical flow and the camera direction estimate and
convert it to relative depth z ∈ [0, 1].

3.2 Predicting Relative Depth From a Single Image

While a CNN for predicting depth from a single image is a core component of our sys-
tem, we are primarily interested in relative depth prediction as a proxy task, rather than
an end in itself. We therefore select standard CNN architectures and focus on quanti-
fying the power of the depth task for pre-training and domain adaptation, compared to
using the same networks with labeled data. Specifically, we work with variants of the
standard AlexNet [46], VGG16 [1], and ResNet50 [20] architectures.

Given an RGB image I , we need pixelwise predictions in the form of a depth image
z, so we modify both AlexNet, VGG16, and ResNet50 to produce output with the same
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spatial resolution as the input image. In particular, we consider Fully Convolutional
Networks (FCNs) [2] and an encoder-decoder with skip connections [39,40]. Detailed
discussions can be found in the experiment section.

Since the relative depth (i.e., the depth percentile) is estimated over the entire image,
it is essential to feed the entire image to the CNN to make a prediction. For CityDriv-
ing and KITTI, we simply resize the input image to 224 × 416 and 352 × 1212. For
CityScapes, we discard the bottom 20% portion or so of each video frame containing
mainly the hood of a car, which remains static over all videos and makes the relative
depth estimation inaccurate (recall our relative depth estimation is mainly based on
motion information). The cropped input image is then resized to 384 × 992. During
training, we employ horizontal flipping and color jittering for data augmentation. Since
relative depth serves as a proxy, rather than an end task, even though the relative depth
estimation is not always correct, the network is able to tolerate some degree of noise as
shown in [8]; we can then repurpose the network’s learned representation.

In all experiments, we use L1 loss for each pixel when training for depth predic-
tion, i.e., we train networks to regress the relative depth values. All AlexNet, VGG16,
and ResNet50 variants are trained for 30 epochs using the Adam optimizer [47] with
momentum of β1 = 0.9, β2 = 0.999, and weight decay of 0.0005. The learning rate is
0.0001 and is held constant during the pre-training stage.

4 Experiments

We consider three urban scene understanding tasks: semantic segmentation, joint se-
mantic reasoning consisting of road segmentation and object detection [48], and monoc-
ular absolute depth estimation.

4.1 Semantic Segmentation

We consider three datasets commonly used for evaluating semantic segmentation. Their
main characteristics are summarized below:

KITTI [49]: 100 training images, 46 testing images, spatial dimensions of 370×1226,
11 classes.

CamVid [50,51]: 367 training images, 101 validation images, 233 testing images,
spatial dimensions of 720× 960, 11 classes.

CityScapes [18]: 2975 training images, 500 validation images, 1525 testing images,
spatial dimensions of 1024 × 2048, 19 classes. We conduct experiments on images at
half resolution.

The first two datasets are much too small to provide sufficient data for “from scratch”
training of a deep model; CityScapes is larger, but we show below that all three datasets
benefit from pre-training. We use the curated annotations of the CamVid dataset re-
leased by [53]. As a classical CNN-based model for semantic segmentation, we report
results of different variants of the Fully Convolutional Network (FCN) [2].

We compare our results to those obtained with other self-supervision strategies sur-
veyed in Section 2. Since only AlexNet pre-trained models are available for most of the
previous self-supervised methods, we also train an AlexNet. During training, the inputs
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Table 1: Comparisons of mean IoU scores of AlexNet FCN32s for semantic segmenta-
tion using different self-supervised models. CS=CityScapes, K=KITTI, CV=CamVid.

pre-training method supervision source CS K CV

supervised ImageNet labels 48.1 46.2 57.4

none - 40.7 39.6 44.0

tracking [6] motion 41.9 42.1 50.5
moving [7] ego-motion 41.3 40.9 49.7
watch-move [8] motion seg. 41.5 40.8 51.7
frame-order [9] motion 41.5 39.7 49.6
context [10] appearance 39.7 - 37.8
object-centric [11] appearance 39.6 39.1 48.0
colorization [21,3] appearance (color) 42.9 35.8 53.2
cross-channel [52] misc. 36.8 40.8 46.3
audio [12] video soundtrack 39.6 40.7 51.5

Ours depth 45.4 42.6 53.4

are random crops of 352 × 352 for KITTI and 704 × 704 for CamVid. Each FCN32s
using different pre-training models is trained for 600 epochs with a batch size of 16 us-
ing 4 GPUs. For CityScapes, the inputs to the network are random crops of 512× 512.
Each FCN32s is trained for 400 epochs with a batch size of 16. In addition to the ran-
dom crops, random horizontal flips and color jittering are also performed. The CNNs at
this stage (learning segmentation) are trained or fine-tuned using the Adam optimizer,
where weight decay is 0.0005. For the learning rate, we use 0.0001 and decrease it by
factor of 10 at the 400th epoch (300th epoch for CityScapes).

Quantitative comparisons can be found in Table 16. Our pre-trained model performs
significantly better than the model learned from scratch on all three datasets, validating
the effectiveness of our pre-training. Moreover, we obtain new state-of-the-art results
on all three urban scene segmentation datasets among methods that use self-supervised
pre-training. In particular, our model outperforms all other self-supervised models with
motion cues (the first four self-supervised models in Table 1).

4.2 Ablation Studies

We perform ablation studies using VGG16 FCN32s on the semantic segmentation datasets.
Specifically, we study the following aspects.
Number of pre-training images. Figure 3(a) demonstrates that the performance of
our depth pre-trained model scales linearly with the log of the number of pre-training
images on CamVid, which is similar to the conclusion of [8].

On KITTI, our pre-trained model initially has a big performance boost when the
number of pre-training images increases from 1K to 10K. With enough data (more than

6 We were unable to get meaningful results with [10] on KITTI and with [15] on all three seg-
mentation datasets.
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Fig. 3: Ablation studies of performance by (a) varying number of pre-training images
on KITTI and CamVid, (b) varying number of fine-tuning images of CityScapes.

Table 2: Mean IoU scores of semantic segmentation using different architectures on
different datasets. CD=CityDriving, CS=CityScapes, CV=CamVid, and K=KITTI.

pre-training
FCN32s FCN16s FCN8s

CS CV K CS CV K CS CV K

ImageNet 58.7 63.7 51.5 62.9 65.9 55.3 63.4 67.0 56.4
scratch 45.4 41.0 32.4 51.3 44.1 33.1 51.6 44.3 34.2

Ours CD 55.0 57.8 45.6 57.6 59.0 47.7 59.8 60.3 48.6
Ours CD+K 56.0 58.5 46.0 56.9 58.8 48.2 58.9 60.1 49.0

Ours CD+CS 56.2 58.5 47.4 58.5 58.8 47.8 60.5 59.9 49.6

10K), the performance also scales linearly with the log of the number of the pre-training
images.
Number of fine-tuning images. Figure 3(b) shows that every model (ImageNet, scratch,
our depth pre-trained model) benefits from more fine-tuning data on the CityScapes
dataset. For both ImageNet and our depth pre-trained models, it suggests that more
fine-tuning data is also beneficial for transferring the previously learned representations
to a new task.

4.3 Domain Adaptation by Pre-Training

In the experiments described above, the two stages (pre-training on self-supervised
depth prediction, followed by supervised training for segmentation) rely on data that
come from significantly different domains. The self-supervised learning uses videos
obtained from moving through North American cities. In contrast, none of the target
dataset images were collected in the same geographic locations. For instance, CityScapes
includes data from driving in German cities. Thus, in addition to a shift in task, the fine-
tuning of the network for segmentation must also deal with a domain shift in the input.

CityScapes [18] and KITTI [16] make available video sequences that give temporal
context to every image in the dataset. None of these extra frames are labeled, but we
can leverage them in the following way. Before training the network on segmentation,
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Fig. 4: Qualitative semantic segmentation results on CityScapes. From top to bottom:
input images, predictions of FCN8s with no pre-training, our FCN8s pre-trained on
CityDriving, our FCN8s pre-trained on CityDriving adapted to CityScapes, ImageNet
FCN8s, and ground-truth annotations. The difference between the 2nd and 3rd rows
shows a clear benefit of pre-training with relative depth prediction. The difference be-
tween 3rd rows and 4th rows shows the benefit our unsupervised domain adaptation
using pre-training (e.g., the bicyclist and the bus in the second and third columns, re-
spectively).

we fine-tune it, using the same self-supervised relative depth prediction task described
in Section 3.1, on these videos. Our intuition is that this may induce some of the mod-
ifications in the network that reflect the changing distribution of the input. Then, we
proceed as before to train the fine-tuned representation on the semantic segmentation
data. Specifically, we fine-tune different FCNs variants based on VGG16 sequentially,
i.e., from FCN32s to FCN16s, and finally to FCN8s. For FCN32s, the training proce-
dure is identical to AlexNet FCN32s described earlier. FCN16s and FCN8s are trained
for the same number of epochs as FCN32s, where the learning rate is set to 0.00002 and
0.00001, respectively, and kept constant during training.

The effectiveness of our unsupervised domain adaptation for semantic segmenta-
tion can be found in Table 2. The last two rows of demonstrate that such fine-tuning can
consistently improve the performance of a self-supervised model over all FCN vari-
ants on both CityScapes and KITTI, validating its effectiveness as a domain adaptation
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Table 3: Results of joint semantic reasoning, including road segmentation and car de-
tection.

pre-training
Road Segmentation Car Detection (AP)
F1 AP Easy Medium Hard

ImageNet 96.33 92.26 95.59 86.43 72.28
scratch 93.78 91.37 89.37 79.93 66.02

Ours CD 94.74 92.13 92.84 84.73 69.47
Ours CD+K 95.66 92.14 94.31 85.72 70.50

approach. Interestingly, we can see that while fine-tuning is helpful for FCN32s on
CamVid initially, it does not help much for FCN16s and FCN8s. Perhaps this is due to
the domain gap between CamVid and CityScapes/KITTI. Qualitative semantic segmen-
tation results can be found in Fig. 4.

4.4 Joint Semantic Reasoning

Joint semantic reasoning is important for urban scene understanding, especially with re-
spect to tasks such as autonomous driving [48]. We investigate the effectiveness of our
pre-trained model and the unsupervised strategy of domain adaptation using the Multi-
Net architecture [48] for joint road segmentation and car detection.7 MultiNet consists
of a single encoder, using the VGG16 as backbone, and two sibling decoders for each
task. For road segmentation, the decoder contains three upsampling layers, forming an
FCN8s. The car detection decoder directly regresses the coordinates of objects. Follow-
ing [48], the entire network is jointly trained using the Adam optimizer, using a learning
rate of 0.00005 and weight decay of 0.0005 for 200K steps. We refer readers to [48] for
more technical details.

We replace the ImageNet-trained VGG16 network with a randomly initialized one
and our own VGG16 pre-trained on CityDriving using relative depth. For the road seg-
mentation task, there are 241 training and 48 validation images. For car detection, there
are 7K training images 481 validation images. Detailed comparisons on the validation
set can be found in Table 3. We use the F1 measure and Average Precision (AP) scores
for road segmentation evaluation and AP scores for car detection. AP scores for dif-
ferent car categories are reported separately. We can clearly see that our pre-trained
model (Ours CD) consistently outperforms the randomly initialized model (scratch in
Table 3). Furthermore, by using the domain adaptation strategy via fine-tuning on the
KITTI raw videos (Ours CD+K), we can further close the gap between an ImageNet
pre-trained model. Remarkably, after fine-tuning, the F1 score of road segmentation
and AP scores for easy and medium categories of our pre-trained model are pretty close
to the ImageNet counterpart’s. (See last row of Table 3.)

7 We use the author’s released code https://github.com/MarvinTeichmann/
MultiNet. As the scene classification data is not publicly available, we only study road
segmentation and car detection here.

https://github.com/MarvinTeichmann/MultiNet
https://github.com/MarvinTeichmann/MultiNet
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Table 4: Monocular depth estimation on the KITTI dataset using the split of
Eigen et al. [55] (range of 0-80m). For model details, Arch.=Architecture, A=AlexNet,
V=VGG16, and R=ResNet50. For training data, Class.=classification, I=ImageNet,
CD=CityDriving, K=KITTI, CS=CityScapes. pp indicates test-time augmentation by
horizontally flipping the input image.

Method Arch.
Training Data Error Metrics Accuracy Metrics

Class. Stereo Video GT Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

[55] A I - - K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
[56] A I - - K 0.202 1.614 6.523 0.275 0.678 0.895 0.965

[39]+pp V - CS+K - - 0.118 0.923 5.015 0.210 0.854 0.947 0.976
[39]+pp R - CS+K - - 0.114 0.898 4.935 0.206 0.861 0.949 0.976

[40] V - - CS+K - 0.198 1.836 6.565 0.275 0.718 0.901 0.960
[57] R I K - K 0.113 0.741 4.621 0.189 0.862 0.960 0.986

Ours V I - - K 0.157 1.115 5.546 0.233 0.768 0.922 0.974
Ours V - - - K 0.163 1.241 5.649 0.238 0.765 0.918 0.970
Ours V - - CD K 0.154 1.117 5.499 0.228 0.775 0.928 0.976
Ours V - - CD+K K 0.148 1.056 5.317 0.221 0.791 0.932 0.977

Ours R I - - K 0.128 0.933 5.073 0.203 0.827 0.945 0.980
Ours R - - - K 0.131 0.937 5.032 0.203 0.827 0.946 0.981
Ours R - - CD K 0.128 0.901 4.898 0.198 0.834 0.948 0.983
Ours R - - CD+K K 0.125 0.881 4.903 0.195 0.840 0.951 0.983

4.5 Monocular Absolute Depth Estimation

For the monocular absolute depth estimation, we adopt the U-Net architecture [54]
similar to [39,40], which consists of a fully convolutional encoder and another fully
convolutional decoder with skip connections. In order to use an ImageNet pre-trained
model, we replace the encoder with the VGG16 and ResNet50 architectures. We use the
training and validation set of [39], containing 22.6K and 888 images, respectively. We
evaluate our model on the Eigen split [55,39], consisting of 697 images, where ground-
truth absolute depth values are captured using LiDAR at sparse pixels. Unlike [39],
which uses stereo image pairs as supervision to train the network, or [40], which uses
neighboring video frames as supervision to train the network (yet camera intrinsic pa-
rameters are required), we use the absolute sparse LiDAR depth values to fine-tune our
network. The entire network (either VGG16 or ResNet50 version) is trained for 300
epochs using the Adam optimizer with a weight decay of 0.0005. The initial learning
rate is 0.0001 and decreased by factor of 10 at the 200th epoch.

Detailed comparisons can be found in Table 4. We can observe that our pre-trained
models consistently outperforms ImageNet counterparts, as well as randomly initialized
models, using either VGG16 or ResNet50 architectures. It is worth noting, however, that
converting relative depth to absolute depth is non-trivial. Computing relative depth (i.e.,
percentile from absolute depth) is a non-linear mapping. The inverse transformation
from relative depth to absolute depth is not unique. Following [40], we multiply our
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relative depth by a factor as the ratio between relative depth and absolute depth, we get
pretty bad results (RMSE of 11.08 vs 4.903), showing our task is non-trivial.

Moreover, pre-training as domain adaptation also improves the performance of our
pre-trained model. After fine-tuning our pre-trained model using KITTI’s raw videos
(Ours CD+K), our ResNet50 model achieves better results than most of the previous
methods [55,56,39,40]. The results are also on par with the state-of-the-art method [57].

5 Conclusions and Discussions

We have proposed a new proxy task for self-supervised learning of visual representa-
tions. It requires only access to unlabeled videos taken by a moving camera. Repre-
sentations are learned by optimizing prediction of relative depth, recovered from esti-
mated motion flow, from individual (single) frames. Although ostensibly non-semantic,
training for this task is likely to encourage the emergence of semantically meaningful
representations, since scene understanding can provide significant cues for predicting
depth. Indeed, we show this task to be a powerful proxy task, which is competitive
with recently proposed alternatives as a means of pre-training representations on un-
labeled data. We also demonstrate a novel application of such pre-training, aimed at
domain adaptation. When given videos taken by cars driven in cities, self-supervised
pre-training primes the downstream urban scene understanding networks, leading to
improved accuracy after fine-tuning on a small amount of manually labeled data.

Our work offers novel insights about one of the most important questions in vision
today: how can we leverage unlabeled data, and in particular massive amounts of un-
labeled video, to improve recognition systems. While a comprehensive picture of self-
supervision methods and the role they play in this pursuit is yet to emerge, our results
suggest that learning to predict relative depth is an important piece of this picture.

While the gap of the performance between self-supervised methods and their Ima-
geNet counterparts is quickly shrinking, none of current self-supervised methods per-
forms better than ImageNet pre-trained models on tasks involving semantics (e.g., se-
mantic segmentation and object detection). This makes pre-training on ImageNet still
practically critical for many computer vision tasks. Despite this fact, this does not mean
self-supervised methods are unimportant or unnecessary. The value of self-supervised
methods lies in the fact that the training data can easily be scaled up without tedious
and expensive human effort.

On other tasks, better performance of self-supervised methods than ImageNet coun-
terparts has been achieved, including our monocular depth estimation and surface nor-
mal prediction [37]. Moreover, it has been shown that combining different self-supervised
methods can lead to better performance [36,37]. All of these make it very promising
that representations learned using self-supervised methods may surpass what ImageNet
provides us today.
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