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Fig.1l. Masked images and corresponding inpainted results using our partial-
convolution based network.
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Abstract. Existing deep learning based image inpainting methods use
a standard convolutional network over the corrupted image, using con-
volutional filter responses conditioned on both valid pixels as well as the
substitute values in the masked holes (typically the mean value). This
often leads to artifacts such as color discrepancy and blurriness. Post-
processing is usually used to reduce such artifacts, but are expensive and
may fail. We propose the use of partial convolutions, where the convolu-
tion is masked and renormalized to be conditioned on only valid pixels.
We further include a mechanism to automatically generate an updated
mask for the next layer as part of the forward pass. Our model out-
performs other methods for irregular masks. We show qualitative and
quantitative comparisons with other methods to validate our approach.

Keywords: Partial Convolution, Image Inpainting

1 Introduction

Image inpainting, the task of filling in holes in an image, can be used in many
applications. For example, it can be used in image editing to remove unwanted
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(a) Image with hole (b) PatchMatch (c) lizuka et al.[10] (d) Yu et al.[3§]

(e) Hole=127.5  (f) Hole=IN_Mean (g) Partial Conv  (h) Ground Truth

Fig. 2. From left to right, top to bottom: image with hole. 2(b)} inpainted result
of PatchMatch[2]. inpainted result of lizuka et al.[10]. 2(d)} Yu et al.[38].

and [2(f)| are using the same network architecture as Section but using typical
convolutional network, uses the pixel value 127.5 to initialize the holes. uses
the mean ImageNet pixel value. our partial convolution based results which are
agnostic to hole values.

image content, while filling in the resulting space with plausible imagery. Previ-
ous deep learning approaches have focused on rectangular regions located around
the center of the image, and often rely on expensive post-processing. The goal
of this work is to propose a model for image inpainting that operates robustly
on irregular hole patterns (see Fig. [1)), and produces semantically meaningful
predictions that incorporate smoothly with the rest of the image without the
need for any additional post-processing or blending operation.

Recent image inpainting approaches that do not use deep learning use image
statistics of the remaining image to fill in the hole. PatchMatch [2], one of the
state-of-the-art methods, iteratively searches for the best fitting patches to fill
in the holes. While this approach generally produces smooth results, it is limited
by the available image statistics and has no concept of visual semantics. For
example, in Figure PatchMatch was able to smoothly fill in the missing
components of the painting using image patches from the surrounding shadow
and wall, but a semantically-aware approach would make use of patches from
the painting instead.

Deep neural networks learn semantic priors and meaningful hidden represen-
tations in an end-to-end fashion, which have been used for recent image inpaint-
ing efforts. These networks employ convolutional filters on images, replacing the
removed content with a fixed value. As a result, these approaches suffer from
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dependence on the initial hole values, which often manifests itself as lack of
texture in the hole regions, obvious color contrasts, or artificial edge responses
surrounding the hole. Examples using a U-Net architecture with typical convolu-
tional layers with various hole value initialization can be seen in Figure and
2(f)l (For both, the training and testing share the same initalization scheme).

Conditioning the output on the hole values ultimately results in various types
of visual artifacts that necessitate expensive post-processing. For example, lizuka
et al. [TI0] uses fast marching [32] and Poisson image blending [23], while Yu et
al. [38] employ a following-up refinement network to refine their raw network
predictions. However, these refinement cannot resolve all the artifacts shown
as [2(c)| and Our work aims to achieve well-incorporated hole predictions
independent of the hole initialization values and without any additional post-
processing.

Another limitation of many recent approaches is the focus on rectangular
shaped holes, often assumed to be center in the image. We find these limitations
may lead to overfitting to the rectangular holes, and ultimately limit the utility
of these models in application. Pathak et al. [22] and Yang et al. [36] assume
64 x 64 square holes at the center of a 128x128 image. Iizuka et al. [I0] and Yu
et al. [38] remove the centered hole assumption and can handle irregular shaped
holes, but do not perform an extensive quantitative analysis on a large number
of images with irregular masks (51 test images in [g]). In order to focus on the
more practical irregular hole use case, we collect a large benchmark of images
with irregular masks of varying sizes. In our analysis, we look at the effects of
not just the size of the hole, but also whether the holes are in contact with the
image border.

To properly handle irregular masks, we propose the use of a Partial Con-
volutional Layer, comprising a masked and re-normalized convolution operation
followed by a mask-update step. The concept of a masked and re-normalized
convolution is also referred to as segmentation-aware convolutions in [7] for the
image segmentation task, however they did not make modifications to the in-
put mask. Our use of partial convolutions is such that given a binary mask our
convolutional results depend only on the non-hole regions at every layer. Our
main extension is the automatic mask update step, which removes any mask-
ing where the partial convolution was able to operate on an unmasked value.
Given sufficient layers of successive updates, even the largest masked holes will
eventually shrink away, leaving only valid responses in the feature map. The
partial convolutional layer ultimately makes our model agnostic to placeholder
hole values.

In summary, we make the following contributions:

— we propose the the use of partial convolutions with an automatic mask update
step for achieving state-of-the-art on image inpainting.

— while previous works fail to achieve good inpainting results with skip links
in a U-Net [34] with typical convolutions, we demonstrate that substituting
convolutional layers with partial convolutions and mask updates can achieve
state-of-the-art inpainting results.



4 Guilin Liu et al.

— to the best of our knowledge, we are the first to demonstrate the efficacy of
training image-inpainting models on irregularly shaped holes.

— we propose a large irregular mask dataset, which will be released to public
to facilitate future efforts in training and evaluating inpainting models.

2 Related Work

Non-learning approaches to image inpainting rely on propagating appearance
information from neighboring pixels to the target region using some mechanisms
like distance field[3Tl32]. However, these methods can only handle narrow holes,
where the color and texture variance is small. Big holes may result in over-
smoothing or artifacts resembling Voronoi regions such as in [32]. Patch-based
methods such as [BII5] operate by searching for relevant patches from the image’s
non-hole regions or other source images in an iterative fashion. However, these
steps often come at a large computation cost such as in [28]. PatchMatch [2]
speeds it up by proposing a faster similar patch searching algorithm. However,
these approaches are still not fast enough for real-time applications and cannot
make semantically aware patch selections.

Deep learning based methods typically initialize the holes with some con-
stant placeholder values e.g. the mean pixel value of ImageNet [26], which is
then passed through a convolutional network. Due to the resulting artifacts,
post-processing is often used to ameliorate the effects of conditioning on the
placeholder values. Content Encoders [22] first embed the 128x128 image with
64x64 center hole into low dimensional feature space and then decode the fea-
ture to a 64x64 image. Yang et al. [36] takes the result from Content Encoders
as input and then propagates the texture information from non-hole regions to
fill the hole regions as postprocessing. Song et al. [30] uses a refinement network
in which a blurry initial hole-filling result is used as the input, then iteratively
replaced with patches from the closest non-hole regions in the feature space. Li
et al. [I7] and Tizuka et al. [I0] extended Content Encoders by defining both
global and local discriminators; then lizuka et al. [I0] apply Poisson blending as
a post-process. Following [10], Yu et al. [38] replaced the post-processing with a
refinement network powered by the contextual attention layers.

Amongst the deep learning approaches, several other efforts also ignore the
mask placeholder values. In Yeh et al. [37], searches for the closest encoding to the
corrupted image in a latent space, which is then used to condition the output of
a hole-filling generator. Ulyanov et al. [34] further found that the network needs
no external dataset training and can rely on the structure of the generative
network itself to complete the corrupted image. However, this approach can
require a different set of hyper parameters for every image, and applies several
iterations to achieve good results. Moreover, their design [34] is not able to
use skip links, which are known to produce detailed output. With standard
convolutional layers, the raw features of noise or wrong hole initialization values
in the encoder stage will propagate to the decoder stage. Our work also does
not depend on placeholder values in the hole regions, but we also aim to achieve
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good results in a single feedforward pass and enable the use of skip links to create
detailed predictions.

Our work makes extensive use of a masked or reweighted convolution opera-
tion, which allows us to condition output only on valid inputs. Harley et al. [7]
recently made use of this approach with a soft attention mask for semantic seg-
mentation. It has also been used for full-image generation in PixelCNN [20], to
condition the next pixel only on previously synthesized pixels. Uhrig et al. [33]
proposed sparsity invariant CNNs with reweighted convolution and max pooling
based mask updating mechanism for depth completion. For image inpainting,
Ren et al. [24] proposed shepard convolution layer where the same kernel is ap-
plied for both feature and mask convolutions. The mask convolution result acts
as both the reweighting denominator and updated mask, which does not guar-
antee the hole to evolve during updating due to the kernel’s possible negative
entries. It cannot handle big holes properly either. Discussions of other CNN
variants like [4] are beyond the scope of this work.

3 Approach

Our proposed model uses stacked partial convolution operations and mask up-
dating steps to perform image inpainting. We first define our convolution and
mask update mechanism, then discuss model architecture and loss functions.

3.1 Partial Convolutional Layer

We refer to our partial convolution operation and mask update function jointly
as the Partial Convolutional Layer. Let W be the convolution filter weights
for the convolution filter and b its the corresponding bias. X are the feature
values (pixels values) for the current convolution (sliding) window and M is the
corresponding binary mask. The partial convolution at every location, similarly
defined in [7], is expressed as:

Tz = sum(M)
0, otherwise

) {WT(X@M) sum i sum (M) > 0 O

where ® denotes element-wise multiplication, and 1 has same shape as M but
with all elements being 1. As can be seen, output values depend only on the
unmasked inputs. The scaling factor sum(1)/sum(M) applies appropriate scaling
to adjust for the varying amount of valid (unmasked) inputs.

After each partial convolution operation, we then update our mask as follows:
if the convolution was able to condition its output on at least one valid input
value, then we mark that location to be valid. This is expressed as:

(2)

, J1, if sum(M) >0
N 0, otherwise
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and can easily be implemented in any deep learning framework as part of the
forward pass. With sufficient successive applications of the partial convolution
layer, any mask will eventually be all ones, if the input contained any valid pixels.

3.2 Network Architecture and Implementation

Implementation. Partial convolution layer is implemented by extending exist-
ing standard PyTorch[21], although it can be improved both in time and space
using custom layers. The straightforward implementation is to define binary
masks of size CxHxW, the same size with their associated images/features,
and then to implement mask updating is implemented using a fixed convolu-
tion layer, with the same kernel size as the partial convolution operation, but
with weights identically set to 1 and no bias. The entire network inference on a
512x512 image takes 0.029s on a single NVIDIA V100 GPU, regardless of the
hole size.

Network Design. We design a UNet-like architecture [25] similar to the one
used in [I1], replacing all convolutional layers with partial convolutional layers
and using nearest neighbor up-sampling in the decoding stage. The skip links
will concatenate two feature maps and two masks respectively, acting as the
feature and mask inputs for the next partial convolution layer. The last partial
convolution layer’s input will contain the concatenation of the original input
image with hole and original mask, making it possible for the model to copy
non-hole pixels. Network details are found in the supplementary file.

Partial Convolution as Padding. We use the partial convolution with
appropriate masking at image boundaries in lieu of typical padding . This ensures
that the inpainted content at the image border will not be affected by invalid
values outside of the image — which can be interpreted as another hole.

3.3 Loss Functions

Our loss functions target both per-pixel reconstruction accuracy as well as com-
position, i.e. how smoothly the predicted hole values transition into their sur-
rounding context.

Given input image with hole I;,, initial binary mask M (0 for holes), the
network prediction Iout, and the ground truth image I, We first define our per-
pixel losses Lpore = ||(1 M) (Iouf* gf)”h valid = HMG( out — gt)”l;

where Ny, denotes the number of elements in I,y (Ng, = C * H*W and C, H

and W are the channel size, height and width of image I,,). These are the L1

losses on the network output for the hole and the non-hole pixels respectively.
Next, we define the perceptual loss, introduced by Gatys et al. [6]:

P-1 HLpIOm _ gt”1 ||!p comp ngtnl
['perceptual Z Z N (3)
p=0 w9t

Here, I.opm)p is the raw output image Iout7 but with the non-hole pixels directly
set to ground truth; N oot is the number of elements in W,{Q‘. The perceptual
p
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loss computes the L' distances between both I,,: and I.pmp and the ground
truth, but after projecting these images into higher level feature spaces using an
ImageNet-pretrained VGG-16 [29]. W;* is the activation map of the pth selected
layer given original input I.. We use layers pooll, pool2 and pool3 for our loss.

We further include the style-loss term, which is similar to the perceptual
loss [6], but we first perform an autocorrelation (Gram matrix) on each feature
map before applying the L!.

P—1
1 out out
aens = X e o) @) - )|, )
P—1
1 comp comp
Lot = 3 g [R5 @)~ )|, @

Here, we note that the matrix operations assume that the high level features
U (z), is of shape (H,W,) x Cp, resulting in a C}, x C},, Gram matrix, and K, is
the normalization factor 1/Cy, H,W,, for the pth selected layer. Again, we include
loss terms for both raw output and composited output.

Our final loss term is the total variation (TV) loss L¢,: which is the smoothing
penalty [12] on R, where R is the region of 1-pixel dilation of the hole region.

o 3 (RN .Y N 3 (Tbmd — T2 ol ©)
tv —
(i,))€R,(i.j+1)ER Teomp (1.))ER,(i+1,§)€R Neoms

where, Ny, is the number of elements in I.omp.
The total loss Liotq; is the combination of all the above loss functions.

ﬁtotal = ‘Cvalid+6£hole +0~05£perceptual+120(£styleout +£stylecomp)+0~1£tv (7)

The loss term weights were determined by performing a hyperparameter
search on 100 validation images.

Ablation Study of Different Loss Terms. Perceptual loss [12] is known
to generate checkerboard artifacts. Johnson et al. [I2] suggests to ameliorate the
problem by using the total variation (TV) loss. We found this not to be the case
for our model. Figure shows the result of the model trained by removing
Listyleon, a0d Lstyic, o, from Liotqr. For our model, the additional style loss term
is necessary. However, not all the loss weighting schemes for the style loss will
generate plausible results. Figure shows the result of the model trained with
a small style loss weight. Compared to the result of the model trained with full
Liotar in Figure[3(g)] it has many fish scale artifacts. However, perceptual loss is
also important; grid-shaped artifacts are less prominent in the results with full
Liotar (Figure than the results without perceptual loss (Figure . We
hope this discussion will be useful to readers interested in employing VGG-based
high level losses.
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(C) full ['total

(i) Input (§) no Lperceptuar (k) full Liotar 1 GT

Fig. 3. In top row, from left to right: input image with hole, result without style loss,
result using full Liotq1, and ground truth. In middle row, from left to right: input image
with hole, result using small style loss weight, result using full Lotq1, and ground truth.
In bottom row, from left to right: input image with hole, result without perceptual loss,
result using full Liotq1, and ground truth.

4 Experiments

4.1 Irregular Mask Dataset

Previous works generate holes in their datasets by randomly removing rectan-
gular regions within their image. We consider this insufficient in creating the
diverse hole shapes and sizes that we need. As such, we begin by collecting
masks of random streaks and holes of arbitrary shapes. We found the results of
occlusion/dis-occlusion mask estimation method between two consecutive frames
for videos described in [31] to be a good source of such patterns. We generate
55,116 masks for the training and 24,866 masks for testing. During training, we
augment the mask dataset by randomly sampling a mask from 55,116 masks and
later perform random dilation, rotation and cropping. All the masks and images
for training and testing are with the size of 512x512.

We create a test set by starting with the 24,866 raw masks and adding ran-
dom dilation, rotation and cropping. Many previous methods such as [10] have
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EANGES 25020

Fig. 4. Some test masks for each hole-to-image area ratio category. 1, 3 and 5 are
shown using their examples with border constraint; 2, 4 and 6 are shown using their
examples without border constraint.

degraded performance at holes near the image borders. As such, we divide the
test set into two: masks with and without holes close to border. The split that
has holes distant from the border ensures a distance of at least 50 pixels from
the border.

We also further categorize our masks by hole size. Specifically, we generate 6
categories of masks with different hole-to-image area ratios: (0.01, 0.1], (0.1, 0.2],
(0.2, 0.3], (0.3, 0.4], (0.4, 0.5], (0.5, 0.6]. Each category contains 1000 masks with
and without border constraints. In total, we have created 6 x 2 x 1000 = 12, 000
masks. Some examples of each category’s masks can be found in Figure [4]

4.2 Training Process

Training Data We use 3 separate image datasets for training and testing:
ImageNet dataset [20], Places2 dataset [39] and CelebA-HQ [I9I13]. We use the
original train, test, and val splits for ImageNet and Places2. For CelebA-HQ, we
randomly partition into 27K images for training and 3K images for testing.

Training Procedure. We initialize the weights using the initialization method
described in [9] and use Adam [I4] for optimization. We train on a single NVIDIA
V100 GPU (16GB) with a batch size of 6.

Initial Training and Fine-Tuning. Holes present a problem for Batch
Normalization because the mean and variance will be computed for hole pixels,
and so it would make sense to disregard them at masked locations. However,
holes are gradually filled with each application and usually completely gone by
the decoder stage.

In order to use Batch Normalization in the presence of holes, we first turn on
Batch Normalization for the initial training using a learning rate of 0.0002. Then,
we fine-tune using a learning rate of 0.00005 and freeze the Batch Normalization
parameters in the encoder part of the network. We keep Batch Normalization
enabled in the decoder. This not only avoids the incorrect mean and variance
issues, but also helps us to achieve faster convergence. ImageNet and Places2
models train for 10 days, whereas CelebA-HQ trains in 3 days. All fine-tuning
is performed in one day.

4.3 Comparisons

We compare with 4 methods:
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(¢) GL (d) GntIpt  (e) PConv

Fig. 5. Comparisons of test results on ImageNet

PM: PatchMatch [2], the state-of-the-art non-learning based approach
GL: Method proposed by lizuka et al. [10]

GntIpt: Method proposed by Yu et al. [3§]

Conv: Same network structure as our method but using typical convolu-
tional layers. Loss weights were re-determined via hyperparameter search.

Our method is denoted as PConv. A fair comparison with GL and GntIpt
would require retraining their models on our data. However, the training of both
approaches use local discriminators assuming availability of the local bounding
boxes of the holes, which would not make sense for the shape of our masks.
As such, we directly use their released pre-trained modelsﬂ For PatchMatch, we
used a third-party implementatiorﬂ As we do not know their train-test splits, our
own splits will likely differ from theirs. We evaluate on 12,000 images randomly
assigning our masks to images without replacement.

Qualitative Comparisons. Figure [5] and Figure [6] shows the comparisons
on ImageNet and Places2 respectively. GT represents the ground truth. We
compare with GntIpt[38] on CelebA-HQ in Figure GntIpt tested CelebA-HQ
on 256x256 so we downsample the images to be 256x256 before feeding into
their model. It can be seen that PM may copy semantically incorrect patches to

! https://github.com/satoshiiizuka/siggraph2017_inpainting,
https://github.com/JiahuiYu/generative_inpainting
% https://github.com/younesse—-cv/patchmatch
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Fig. 6. Comparison of test results on Places2 images

fill holes, while GL and GntIpt sometimes fail to achieve plausible results through
post-processing or refinement network. Figure [7|shows the results of Conv, which
are with the distinct artifacts from conditioning on hole placeholder values.

Quantitative comparisons. As mentioned in [38], there is no good numer-
ical metric to evaluate image inpainting results due to the existence of many
possible solutions. Nevertheless we follow the previous image inpainting works
[36138] by reporting ¢; error, PSNR, SSIM [35], and the inception score [27]. ¢;
error, PSNR and SSIM are reported on Places2, whereas the Inception score (IS-
core) is reported on ImageNet. Note that the released model for [I0] was trained
only on Places2, which we use for all evaluations. Table [I] shows the comparison

Conv PConv Conv PConv

Fig. 7. Comparison between typical convolution layer based results (Conv) and partial
convolution layer based results (PConv).
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(b) GntIpt (c) PConv(Ours) (d) Ground Truth

Fig. 8. Test results on CelebA-HQ.

results. It can be seen that our method outperforms all the other methods on
these measurements on irregular masks.

User Study In addition to quantitative comparisons, we also evaluate our
algorithm via a human subjective study. We perform pairwise A/B tests with-
out showing hole positions or original input image with holes, deployed on the
Amazon Mechanical Turk (MTurk) platform. We perform two different kinds of
experiments: unlimited time and limited time. We also report the cases with and
without holes close to the image boundaries separately. For each situation, We
randomly select 300 images for each method, where each image is compared 10
times.

For the unlimited time setting, the workers are given two images at once:
each generated by a different method. The workers are then given unlimited
time to select which image looks more realistic. We also shuffle the image order
to ensure unbiased comparisons. The results across all different hole-to-image
area ratios are summarized in Fig. |§|(a). The first row shows the results where
the holes are at least 50 pixels away from the image border, while the second
row shows the case where the holes may be close to or touch image border. As
can be seen, our method performs significantly better than all the other methods
(50% means two methods perform equally well) in both cases.
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[0.01,0.1] || (0.1,0.2] | (0.2,0.3] || (0.3,0.4] || (0.4,0.5] | (0.5,0.6]
N | B N | B N | B N | B N | B N | B
£, (PM)(%) | 0.45|0.42][ 1.25 | 1.16 || 2.28 | 2.07 || 3.52 | 3.17 || 4.77 | 4.27 || 6.98 | 6.34
£,(GL)(%) 1.39 | 1.53 || 3.01 | 3.22 || 4.51 | 5.00 || 6.05 | 6.77 || 7.34 | 8.20 || 8.60 | 9.78
b (
b (

Gnlpt)(%) | 0.78 | 0.88 || 1.98 | 2.09 || 3.34 | 3.72 || 4.98 | 5.50 || 6.51 | 7.13 || 8.33 | 9.19
Conv)(%) | 0.52 | 0.50 || 1.26 | 1.17 || 2.20 | 2.01 || 3.37 | 3.03 || 4.58 | 4.10 || 6.66 | 6.01
£, (PConv)(%) | 0.49 | 0.47 || 1.18 | 1.09 || 2.07 | 1.88 || 3.19 | 2.84 || 4.37 | 3.85 || 6.45 | 5.72
PSNR(PM) 32.97|33.68 || 26.87|27.51|23.70|24.35|| 21.27 | 22.05 || 19.70 | 20.58 || 17.60 | 18.22
PSNR(GL) 30.17129.74 || 23.87 | 23.83 || 20.92 | 20.73 || 18.80 | 18.61 || 17.60 | 17.38 || 16.90 | 16.37
(Gnlpt) |29.07 | 28.38 || 23.20 | 22.86 || 20.58 | 19.86 || 18.53 | 17.85 || 17.31 | 16.68 || 16.24 | 15.52
PSNR(Conv) |33.21(33.79 27.30 | 27.89 || 24.23| 24.90 || 21.79 | 22.60 || 20.20 | 21.13 ||18.24 18.94
PSNR(PConv)|33.75(34.34(/27.71|28.32||24.54|25.25|/22.01|22.89(|20.34|21.38|| 18.21 |19.04
SSIM(PM) 0.946/0.947 0.861 | 0.865 || 0.763 | 0.768 || 0.666 | 0.675 || 0.568 | 0.579 || 0.459 | 0.472
SSIM(GL) 0.92910.923 || 0.831 | 0.829 || 0.732|0.721 [ 0.638 | 0.627 || 0.543 | 0.533 || 0.446 | 0.440
SSIM(Gnlpt) |0.940 [0.938 0.855 | 0.855 || 0.760 | 0.758 || 0.666 | 0.666 || 0.569 | 0.570 || 0.465 | 0.470
SSIM(Conv) |0.943[0.943 | 0.862 | 0.865 || 0.769 | 0.772 || 0.674 | 0.682 || 0.576 | 0.587 || 0.463 | 0.478
SSIM(PConv) |0.946|0.945 ||0.867|0.870(0.775|0.779|/0.681|0.689(|0.583|0.595|(0.468|0.484
IScore(PM) 0.090 | 0.058 || 0.307 | 0.204 || 0.766 | 0.465 || 1.551 | 0.921 || 2.724 | 1.422 || 4.075 | 2.226
IScore(GL) 0.183]0.112/0.619|0.464 || 1.607 | 1.046 || 2.774 | 1.941 || 3.920 | 2.825 || 4.877 | 3.362
IScore(Gnlpt) |0.127]0.088 || 0.396 | 0.307 || 0.978 | 0.621 || 1.757 | 1.126 || 2.759 | 1.801 || 3.967 | 2.525
IScore(Conv) |0.068 |0.041 || 0.228 | 0.149 || 0.603 | 0.366 || 1.264 | 0.731 || 2.368 | 1.189 || 4.162 | 2.224
IScore(PConv)|0.051|0.032(|0.163|0.109||0.446|0.270(/0.954|0.565|/1.881|0.838||3.603|1.588

Table 1. Comparisons with various methods. Columns represent different hole-to-
image area ratios. N=no border, B=border

250 ms 1000 ms 4000 ms
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gw g 0 M z
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(a) Unlimited time comparison (b) Limited time comparison

Fig. 9. User study results. We perform two kinds of experiments: unlimited time and
limited time. (a) In the unlimited time setting, we compare our result with the result
generated by another method. The rate where our result is preferred is graphed. 50%
means two methods are equal. In the first row, the holes are not allowed to touch the
image boundary, while in the second row it is allowed. (b) In the limited time setting,
we compare all methods to the ground truth. The subject is given some limited time
(250ms, 1000ms or 4000ms) to select which image is more realistic. The rate where
ground truth is preferred over the other method is reported. The lower the curve, the
better.

For the limited time setting, we compare all methods (including ours) to the
ground truth. In each comparison, the result of one method is chosen and shown
to the workers along with the ground truth for a limited amount of time. The
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workers are then asked to select which image looks more natural. This evaluates
how quickly the difference between the images can be perceived. The comparison
results for different time intervals are shown in Fig. @(b) Again, the first row
shows the case where the holes do not touch the image boundary while the
second row allows that. Our method outperforms the other methods in most
cases across different time periods and hole-to-image area ratios.

5 Discussion & Extension

5.1 Discussion

We propose the use of a partial convolution layer with an automatic mask updat-
ing mechanism and achieve state-of-the-art image inpainting results. Our model
can robustly handle holes of any shape, size location, or distance from the image
borders. Further, our performance does not deteriorate catastrophically as holes
increase in size, as seen in Figure [I0] However, one limitation of our method is
that it fails for some sparsely structured images such as the bars on the door in
Figure 11} and, like most methods, struggles on the largest of holes.

Fig. 10. Inpainting results with various dilation of the hole region from left to right:
0, 5, 15, 35, 55, and 95 pixels dilation respectively. Top row: input; bottom row: corre-
sponding inpainted results.

S

R

Fig. 11. Failure cases. Each group is ordered as input, our result and ground truth.

5.2 Extension to Image Super Resolution

We also extend our framework to image super resolution tasks by offsetting pixels
and inserting holes. Specifically, given a low resolution image I with height H and
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“

§
(a) Low Res (b) Input  (c) Input Mask (d) Output (e) GT

Fig. 12. Example input and output for image super resolution task. Input to the net-
work is constructed from the low resolution image by offsetting pixels and inserting

holes using the way described in Section
Bicubic SRGAN MDSR+ PConv GT

Fig. 13. Comparison with SRGAN and MDSR+ for image super resolution task.

width W and up-scaling factor K, we construct the input I’ with height K*H
and width K*W for the network using the following: for each pixel (z,y) in I, we
put it at (K*z+|K/2|, K*y+|K/2]) in I’ and mark this position to have mask
value be 1. One example input setting and corresponding output with K=4 can
be found in Figure[I2] We compare with two well-known image super-resolution
approaches SRGAN[I6] and MDSR+[18] with K'=4 in Figure
Acknowledgement. We would like to thank Jonah Alben, Rafael Valle
Costa, Karan Sapra, Chao Yang, Raul Puri, Brandon Rowlett and other NVIDIA
colleagues for valuable discussions, and Chris Hebert for technical support.
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Appendix

Details of Network Architecture

Module Name Filter Size|# Filters/Channels|Stride/Up Factor|BatchNorm| Nonlinearity
PConvl =7 64 2 - ReLU
PConv2 5x5 128 2 Y ReLU
PConv3 5x5 256 2 Y ReLU
PConv4 3x3 512 2 Y ReLU
PConvb 3x3 512 2 Y ReLU
PConv6 3x3 512 2 Y ReLU
PConv7 3x3 512 2 Y ReLU
PConv8 3x3 512 2 Y ReLU

NearestUpSamplel 512 2 - -
Concatl(w/ PConv7) 512+512 - -
PConv9 3x3 512 1 Y LeakyReLU(0.2)
NearestUpSample2 512 2 -
Concat2(w/ PConv6) 5124512 -
PConv10 3x3 512 1 Y LeakyReLU(0.2)
NearestUpSample3 512 2 - -
Concat3(w/ PConv5) 5124512 - -
PConvll 3x3 512 1 Y LeakyReLU(0.2)
NearestUpSample4 512 2 - -
Concatd(w/ PConv4) 5124512 - -
PConv12 3x3 512 1 Y LeakyReLU(0.2)
NearestUpSampleb 512 2 - -
Concat5(w/ PConv3) 5124256 - -
PConv13 3x3 256 1 Y LeakyReLU(0.2)
NearestUpSample6 256 2 - -
Concat6(w/ PConv2) 2564128 - -
PConv14 3x3 128 1 Y LeakyReLU(0.2)
NearestUpSample7 128 2 - -
Concat7(w/ PConvl) 128464 - -
PConv15 3x3 64 1 Y LeakyReLU(0.2)
NearestUpSample8 64 2 - -
Concat8(w/ Input) 64+3 - -
PConv16 3x3 3 1

Table 2. PConv is defined as a partial convolutional layer with the specified filter
size, stride and number of filters. PConv1-8 are in encoder stage, whereas PConv9-16
are in decoder stage. The BatchNorm column indicates whether PConv is followed
by a Batch Normalization layer. The Nonlinearity column shows whether and what
nonlinearity layer is used (following the BatchNorm if BatchNorm is used). Skip links
are shown using Concat*, which concatenate the previous nearest neighbor upsampled
results with the corresponding mentioned PConv# results from the encoder stage.
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More Comparisons on Irregular Masks
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Fig. 14. Comparisons on irregular masks. The abbreviations of the notations are the

same as Figure 5 and Figure 6 in the paper.
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More Comparisons on Regular Masks
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L

Fig.15. Comparisons on regular masks. The abbreviations of the notations are the
same as Figure 5 and Figure 6 in the paper.
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More Comparisons On Image Super Resolution
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More Results of Our Approach
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