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Abstract

The predominant approach to Visual Question Answer-
ing (VQA) demands that the model represents within its
weights all of the information required to answer any ques-
tion about any image. Learning this information from any
real training set seems unlikely, and representing it in a
reasonable number of weights doubly so. We propose in-
stead to approach VQA as a meta learning task, thus sepa-
rating the question answering method from the information
required. At test time, the method is provided with a support
set of example questions/answers, over which it reasons to
resolve the given question. The support set is not fixed and
can be extended without retraining, thereby expanding the
capabilities of the model. To exploit this dynamically pro-
vided information, we adapt a state-of-the-art VQA model
with two techniques from the recent meta learning litera-
ture, namely prototypical networks and meta networks. Ex-
periments demonstrate the capability of the system to learn
to produce completely novel answers (i.e. never seen during
training) from examples provided at test time. In compari-
son to the existing state of the art, the proposed method pro-
duces qualitatively distinct results with higher recall of rare
answers, and a better sample efficiency that allows training
with little initial data. More importantly, it represents an
important step towards vision-and-language methods that
can learn and reason on-the-fly.

1. Introduction

The task of Visual Question Answering (VQA) demands
that an agent correctly answer a previously unseen question
about a previously unseen image. The fact that neither the
question nor the image is specified until test time means that
the agent must embody most of the achievements of Com-
puter Vision and Natural Language Processing, and many
of those of Artificial Intelligence.

VQA is typically framed in a purely supervised learning
setting. A large training set of example questions, images,
and their correct answers is used to train a method to map
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Figure 1. This paper considers Visual Question Answering in a
meta learning setting. The model is initially trained on a small
set of questions/answers, and is provided with a, possibly large,
additional support set of examples at test time. The model must
learn to learn, or to exploit the additional data on-the-fly, without
the need for retraining the model. Notably, performance improves
as additional and more relevant examples are included.

a question and image to scores over a predetermined, fixed
vocabulary of possible answers using the maximum likeli-
hood [39]. This approach has inherent scalability issues, as
it attempts to represent all world knowledge within the finite
set of parameters of a model such as deep neural network.
Consequently, a trained VQA system can only be expected
to produce correct answers to questions from a very similar
distribution to those in the training set. Extending the model
knowledge or expanding its domain coverage is only possi-
ble by retraining it from scratch, which is computationally
costly, at best. This approach is thus fundamentally inca-
pable of fulfilling the ultimate promise of VQA, which is
answering general questions about general images.

As a solution to these issues we propose a meta-learning
approach to the problem. The meta learning approach im-
plies that the model learns to learn, i.e. it learns to use a



set of examples provided at test time to answer the given
question (Fig. 1). Those examples are questions and im-
ages, each with their correct answer, such as might form
part of the training set in a traditional setting. They are re-
ferred to here as the support set. Importantly, the support
set is not fixed. Note also that the support set may be large,
and that the majority of its elements may have no relevance
to the current question. It is provided to the model at test
time, and can be expanded with additional examples to in-
crease the capabilities of the model. The model we propose
‘learns to learn’ in that it is able to identify and exploit the
relevant examples within a potentially large support set dy-
namically, at test time. Providing the model with more in-
formation thus does not require retraining, and the ability to
exploit such a support set greatly improves the practicality
and scalability of the system. Indeed, it is ultimately de-
sirable for a practical VQA system to be adaptable to new
domains and to continuously improve as more data becomes
available. That vision is a long term objective and this work
takes only a small step in that direction.

Our primary technical contribution is to adapt a state-
of-the-art VQA model[34] to the meta learning scenario.
Our resulting model is a deep neural network that uses sets
of dynamic parameters — also known as fast weights — de-
termined at test time depending on the provided support
set. The dynamic parameters allow to modify adaptively
the computations performed by the network and adapt its
behaviour depending on the support set. We perform a
detailed study to evaluate the effectiveness of those tech-
niques under various regimes of training and support set
sizes. Those experiments are based on the VQA v2 bench-
mark, for which we propose data splits appropriate to study
a meta learning setting.

A completely new capability demonstrated by the result-
ing system is to learn to produce completely novel answers
(i.e. answers not seen during training). Those new answers
are only demonstrated by instances of the support set pro-
vided at test time. In addition to these new capabilities, the
system exhibits a qualitatively distinct behaviour to exist-
ing VQA systems in its improved handling of rare answers.
Since datasets for VQA exhibit a heavy class imbalance,
with a small number of answers being much more frequent
than most others, models optimized for current benchmarks
are prone to fall back on frequent “safe” answers. In con-
trast, the proposed model is inherently less likely to fall
victim to dataset biases, and exhibits a higher recall over
rare answers. The proposed model does not surpass exist-
ing methods on the common aggregate accuracy metric, as
is to be expected given that it does not overfit to the dataset
bias, but it nonetheless exhibits desirable traits overall.

The contributions of this paper are summarized as follows.

1. We re-frame VQA as a meta learning task, in which the
model is provided a test time with a support set of super-

vised examples (questions and images with their correct
answers).

2. We describe a neural network architecture and training
procedure able to leverage the meta learning scenario.
The model is based on a state-of-the-art VQA system
and takes inspiration in techniques from the recent meta
learning literature, namely prototypical networks [33]
and meta networks [24].

3. We provide an experimental evaluation of the proposed
model in different regimes of training and support set
sizes and across variations in design choices.

4. Our results demonstrate the unique capability of the
model to produce novel answers, i.e. answers never seen
during training, by learning from support instances, an
improved recall of rare answers, and a better sample ef-
ficiency than existing models.

2. Related Work

Visual question answering Visual question answering
has gathered significant interest from the computer vision
community [6], as it constitutes a practical setting to eval-
uate deep visual understanding. In addition to visual pars-
ing, VQA requires the comprehension of a text question,
and combined reasoning over vision and language, some-
times on the basis of external or common-sense knowledge.
See [39] for a recent survey of methods and datasets.

VQA is always approached in a supervised setting, us-
ing large datasets [0, 15, 22, 44] of human-proposed ques-
tions with their correct answers to train a machine learning
model. The VQA-real and VQA v2 datasets [0, 15] have
served as popular benchmarks by which to evaluate and
compare methods. Despite the large scale of those datasets,
e.g. more than 650,000 questions in VQA v2, several limita-
tions have been recognized. These relate to the dataset bias
(i.e. the non-uniform, long-tailed distribution of answers)
and the question-conditioned bias (making answers easy to
guess given a question without the image). For example, the
answer Yes is particularly prominent in [6] compared to no,
and questions starting with How many can be answered cor-
rectly with the answer rwo more than 30% of the time [15].
These issues plague development in the field by encour-
aging methods which fare well on common questions and
concepts, rather than on rare answers or more complicated
questions. The aggregate accuracy metric used to compare
methods is thus a poor indication of method capabilities for
visual understanding. Improvements to datasets have been
introduced [1, 15, 43], including the VQA v2, but they only
partially solve the evaluation problems. An increased in-
terest has appeared in the handling of rare words and an-
swers [29, 35]. The model proposed in this paper is in-
herently less prone to incorporate dataset biases than exist-
ing methods, and shows superior performance for handling
rare answers. It accomplishes this by keeping a memory



made up of explicit representations of training and support
instances.

VQA with additional data In the classical supervised
setting, a fixed set of questions and answers is used to train
a model once and for all. With few exceptions, the perfor-
mance of such a model is fixed as it cannot use additional
information at test time. Among those exceptions, [40, 38]
use an external knowledge base to gather non-visual infor-
mation related to the input question. In [35], the authors
use visual information from web searches in the form of
exemplar images of question words, and better handle rare
and novel words appearing in questions as a result. In [34],
the same authors use similar images from web searches to
obtain visual representations of candidate answers.

Those methods use ad-hoc engineered techniques to in-
corporate external knowledge in the VQA model. In com-
parison, this paper presents a much more general approach.
We expands the model knowledge with data provided in
the form of additional supervised examples (questions and
images with their correct answer). A demonstration of the
broader generality of our framework over the works above
is its ability to produce novel answers, i.e. never observed
during initial training and learned only from test-time ex-
amples.

Recent works on text-based question answering have in-

vestigated the retrieval of external information with rein-
forcement learning [26, 25, 8]. Those works are tangen-
tially related and complementary to the approach explored
in this paper.
Meta learning and few shot learning The term meta
learning broadly refers to methods that learn to learn, i.e.
that train models to make better use of training data. It
applies to approaches including the learning of gradient
descent-like algorithms such as [5, 13, 17, 30] for faster
training or fine-tuning of neural networks, and the learning
of models that can be directly fed training examples at test
time [7, 33, 36]. The method we propose falls into the lat-
ter category. Most works on meta learning are motivated by
the challenge of one-shot and few-shot visual recognition,
where the task is to classify an image into categories defined
by a few examples each. Our meta learning setting for VQA
bears many similarities. VQA is treated as a classification
task, and we are provided, at test time, with examples that il-
lustrate the possible answers — possibly a small number per
answer. Most existing methods are, however, not directly
applicable to our setting, due to the large number of classes
(i.e. possible answers), the heavy class imbalance, and the
need to integrate into an architecture suitable to VQA. For
example, recent works such as [36] propose efficient train-
ing procedures that are only suitable for a small number of
classes.

Our model uses a set of memories within a neural net-
work to store the activations computed over the support

set. Similarly, Kaiser et al. [19] store past activations to
remember ‘“rare events”’, which was notably evaluated on
machine translation. Our model also uses network lay-
ers parametrized by dynamic weights, also known as fast
weights. Those are determined at test time depending on
the actual input to the network. Dynamic parameters have
a long history in neural networks [32] and have been used
previously for few-shot recognition [7] and for VQA [27].
One of the memories within our network stores the gradi-
ent of the loss with respect to static weights of the network,
which is similar to the Meta Networks model proposed by
Munkhdalai ef al. [24]. Finally, our output stage produces
scores over possible answers by similarity to prototypes rep-
resenting the output classes (answers). This follows a simi-
lar idea to the Prototypical Networks [33].

Continuum learning An important outcome of framing
VQA in a meta learning setting is to develop models ca-
pable of improving as more data becomes available. This
touches the fields of incremental [12, 31] and continuum
learning [2, 23, 42]. Those works focus on the fine-tuning
of a network with new training data, output classes and/or
tasks. In comparison, our model does not modify itself over
time and cannot experience negative domain shift or catas-
trophic forgetting, which are a central concern of contin-
uum learning [21]. Our approach is rather to use such ad-
ditional data on-the-fly, at test time, i.e. without an iterative
retraining. An important motivation for our framework is its
potential to apply to support data of a different nature than
question/answer examples. We consider this to be an impor-
tant direction for future work. This would allow to leverage
general, non VQA-specific data, e.g. from knowledge bases
or web searches.

3. VQA in a Meta Learning Setting

The traditional approach to VQA is in a supervised set-
ting described as follows. A model is trained to map an
input question Q and image | to scores over candidate an-
swers [39]. The model is trained to maximize the likelihood
of correct answers over a training set 7 of triplets (Q, I, §),
where 8 € [0,1] represents the vector of ground truth
scores of the predefined set of A possible answers. At test
time, the model is evaluated on another triplet (Q’, I, 3")
from an evaluation or test set £. The model predicts scores
s’ over the set of candidate answers, which can be compared
to the ground truth 8’ for evaluation purposes.

We extend the formulation above to a meta learning set-
ting by introducing an additional support set S of similar
triplets (Q”,1”,8"). These are provided to the model at test
time. At a minimum, we define the support set to include the
training examples themselves, i.e. S = 7, but more inter-
estingly, the support set can include novel examples S’ pro-
vided at test time. They constitute additional data to learn
from, such that S = 7 U &’. The triplets (Q, 1, 8) in the
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Figure 2. Overview of the proposed model. We obtain an embedding the input question and image following [34] and our contributions
concern the mapping of this embedding to scores over a set of candidate answers. First, a non-linear transformation (implemented as a
gated hyperbolic tangent layer) is parametrized by static and dynamic weights. Static ones are learned like traditional weights by gradient
descent, while dynamic ones are determined based on the actual input and a memory of candidate dynamic weights filled by processing
the support set. Second, a similarity measure compares the resulting feature vector to a set of prototypes, each representing a specific
candidate answer. Static prototypes are learned like traditional weights, while dynamic prototypes are determined by processing the support
set. Dashed lines indicate data flow during the processing of the support set. See Section 4 for details.

support set can also include novel answers, never seen in
the training set. In that case, the ground truth score vectors
bs of the other elements in the support are simply padded
with zeros to match the larger size A’ of the extended set of
answers.

The following sections describe a deep neural network
that can take advantage of the support set at test time. To
leverage the information contained in the support set, the
model must learn to utilize these examples on-the-fly at test
time, without retraining of the whole model.

4. Proposed Model

The proposed model (Fig. 3) is a deep neural network
that extends the state-of-art VQA system of Teney et al.
[34]. Their system implements the joint embedding ap-
proach common to most modern VQA models [39, 41, 18,

], which is followed by a multi-label classifier over can-
didate answers. Conceptually, we separate the architecture
into (1) the embedding part that encodes the input question
and image, and (2) the classifier part that handles the rea-
soning and actual question answering'. The contributions
of this paper address only the second part. Our contributions
are orthogonal to developments on the embedding part,
which could also benefit e.g. from advanced attention mech-
anisms or other computer vision techniques [3, 37, 39]. We
follow the implementation of [34] for the embedding part.
For concreteness, let us mention that the question embed-
ding uses GloVe word vectors [28] and a Recurrent Gated
Unit (GRU [10]). The image embedding uses features from

I'The separation of the network into an embedding and a classifier parts
is conceptual. The division is arbitrarily placed after the fusion of the
question and image embeddings. Computational requirements aside, the
concept of dynamic parameters is in principle applicable to earlier layers
asin [7].

a CNN (Convolutional Neural Network) with bottom-up at-
tention [3] and question-guided attention over those fea-
tures. See [34] for details.

For the remainder of this paper, we abstract the embed-
ding to modules that produce respectively the question and
image vectors ¢ and v € R”. They are combined with a
Hadamard (element-wise) product into h = q o v, which
forms the input to the classifier on which we now focus on.
The role of the classifier is to map h to a vector of scores
s € [0,1]* over the candidate answers. We propose a def-
inition of the classifier that generalizes the implementation
of traditional models such as [34]. The input to the classifier
h € RP is first passed through a non-linear transformation
fo : RP — RP, then through a mapping to scores over
the set of candidate answers g : R” — [0,1]4. This
produces a vector of predicted scores s = fg(ga(h)). In
traditional models, the two functions correspond to a stack
of non-linear layers for fg, and a linear layer followed by a
softmax or sigmoid for g. We now show how to extend fg
and g4 to take advantage of the meta learning setting.

4.1. Non-linear Transformation fy(-)

The role of the non-linear transformation fg(h) is to
map the embedding of the question/image h to a represen-
tation suitable for the following (typically linear) classifier.
This transformation can be implemented in a neural net-
work with any type of non-linear layers. Our contributions
are agnostic to this implementation choice. We follow [34]
and use a gated hyperbolic tangent layer [ 1], defined as

fo(h) = o(Wh+b) o tanh (W'h+b") (1)
where o is the logistic activation function, W, W' € RD*D

are learned weights, b, b’ € RP are learned biases, and o is
the Hadamard (element-wise) product. For notation pur-



poses, we define the parameters € as the concatenation of
the vectorized weights and biases, i.e. 8 = [W.; W/; b; b'].
This vector thus contains all of the weights and biases
used by the non-linear transformation. A traditional model
would learn the weights 0 by backpropagation and gradient
descent on the training set, and they would be held static
during test time. We propose instead to adaptively adjust
the weights at test time, depending on the input h and the
available support set. Concretely, we use a combination of
static parameters 6° learned in the traditional manner, and
dynamic ones 6¢ determined at test time. They are com-
bined as @ = 6° + wO?, with w” € RP a vector of learned
weights. The dynamic weights can therefore be seen as an
adjustment made to the static ones depending on the input
h.

A set of candidate dynamic weights are maintained in
an associative memory M. This memory is a large set (as
large as the support set, see Section 4.2) of key/value pairs

M = {(ﬁi, é?)}z‘el...|3\~ The interpretation for éf is of
dynamic weights suited to an input similar to h;. Therefore,
at test time, we retrieve appropriate dynamic weights 0 by
soft key matching:

0¢ — Zéf softmax (dcos(hvhi)) @)

where deos (-, +) is the cosine similarity function. We there-
fore retrieve a weighted sum, in which the similarity of h
with the memory keys h; serves to weight the memory val-

ues ;. In practice and for computational reasons, the soft-
max function cuts off after the top %k largest values, with
k in the order of a thousand elements (see Section 5). We
detail in Section 4.2 how the memory is filled by process-
ing the support set. Note that the above formulation can be
made equivalent to the original model in [34] by using only
static weights (0 = 6°). This serves as a baseline in our
experiments (see Section 5).

4.1.1 Mapping to Candidate Answers go(-)

The function g4 (h) maps the output of the non-linear trans-
formation to a vector of scores s € [0,1]* over the set of
candidate answers. It is traditionally implemented as a sim-
ple affine or linear transformation (i.e. a matrix multiplica-
tion). We generalize the definition of g4 (h) by interpreting
it as a similarity measure between its input h and proto-
types @ = {¢i} . representing the possible answers. In
traditional models, each prototype corresponds to one row
of the weight matrix. Our general formulation allows one
or several prototypes per possible answer a as {¢¢ }V';. In-
tuitively, the prototypes represent the typical expected fea-
ture vector when a is a correct answer. The score for a is
therefore obtained as the similarity between the provided
k' and the corresponding prototypes of a. When multiple

prototypes are available, the similarities are averaged. Con-
cretely, we define

o
gp(h') = o(%Zd(h’,cb?Hb”) 3)
=1

where d(-, -) is a similarity measure, o is a sigmoid (logis-
tic) activation function to map the similarities to [0, 1], and
b" is a learned bias term. The traditional models that use a
matrix multiplication [18, 34, 35] correspond to g4(+) that
uses a dot product as the similarity function. In comparison,
our definition generalizes to multiple prototypes per answer
and to different similarity measures. Our experiments eval-
uate the dot product and the weighted L-p norm of vector
differences:

ddot(h, 0) = hT0 @
dLl(h, 0) = ’wHIT |h — 0‘ (5)
dia(h,0) = w7 (h—8)? (6)

where w’’ € RP is a vector of learned weights applied
coordinate-wise.

Our model uses two sets of prototypes, the static #°* and
the dynamic ¢9. The static ones are learned during training
as traditional weights by backpropagation and gradient de-
scent, and held fixed at test time. The dynamic ones are de-
termined at test time by processing the provided support set
(see Section 4.2). Thereafter, all prototypes ® = ¢° U ¢
are used indistinctively. Note that our formulation of g4 (-)
can be made equivalent to the original model of [34] by us-
ing only static prototypes (¢ = &%) and the dot-product
similarity measure dgot(, -). This will serve as a baseline in
our experiments (Section 5).

Finally, the output of the network is attached to a cross-
entropy loss .Z(s, 8) between the predicted and ground
truth for training the model end-to-end [34].

4.2. Processing of Support Set

Both functions fg(-) and g4(-) defined above use dy-
namic parameters that are dependent on the support set.
Our model processes the entire support set in a forward
and backward pass through the network as described be-
low. This step is to be carried out once at test time, prior
to making predictions on any instance of the test set. At
training time, it is repeated before every epoch to account
for the evolving static parameters of the network as training
progresses (see Algorithm 1).

We pass all elements of the support set S through the net-
work in mini-batches for both a forward and backward pass.
The evaluation of fg(-) and g&(-) use only static weights
and prototypes, i.e. 0 = 0° and ¢ = ¢°. To fill the mem-
ory M, we collect, for every element of the support set, its
feature vector h and the gradient Vgs.Z of the final loss
relative to the static weights 8. This effectively captures the
adjustments that would be made by a gradient descent algo-



Algorithm 1: Evaluation of one test or training in-
stance.
Input:
Suppor’[ set . = {(QZ, |7,7'§1)}7,
Instance to evaluate (Q, I, §) from training or test set
Output: Predicted scores s over candidate answers
&9 « () // Initialize dynamic prototypes
M «— 0 /] Initialize memory of dynamic weights
for each element i in support set . do
if training, with probability p then
| continue // Drop random support elements
end
Forward and backward propagation of (Q;, I;, ;)
using only static weights 6° and prototypes ®°

Collect h;
h; = fo(hi)
s; = go(h})

Vgsf(si, 31)
/I Store (key, value) in memory of dynamic weights

M+~ M U (h, Ve Z(8:,3:))

end

Pt = J\}"' va;:l h! Va /I One average per answer
o4 = U, ¢* /I Store dynamic prototypes
Forward prop. of (Q, ) with static and dynamic param.
if test time then
| Return predicted scores s = go (fo(h))
else if training time then
Backpropagation and gradient descent

Update static parameters 6%, ¢°, b, w”, w"’, and

those of the question and image embeddings
end

rithm to those weights for that particular example. The pair
(h,Vg:Z) is added to the memory M, which thus holds
|S| elements at the end of the process.

To determine the set of dynamic prototypes (;Sd, we col-
lect the feature vectors b’ = fg(h) over all instances of the
support set. We then compute their average over instances

having the same correct answer. Concretely, the dynamic

prototype for answer a is obtained as ¢* = ZNA h.

1:8¢=1"""
During training, we must balance the need for data to
train the static parameters of the network, and the need for
an “example” support set, such that the network can learn to
use novel data. If the network is provided with a fixed, con-
stant support set, it will overfit to that input and be unable
to make use of novel examples at test time. Our training
procedure uses all available data as the training set 7, and
we form a different support set S at each training epoch as
a random subset of 7. The procedure is summarized in Al-
gorithm 1. Note that in practice, it is parallelized to process
instances in mini-batches rather than individually.

5. Experiments

We perform a series of experiments to evaluate (1) how
effectively the proposed model and its different components
can use the support set, (2) how useful novel support in-
stances are for VQA, (3) whether the model learns different
aspects of a dataset from classical VQA methods trained in
the classical setting.

Datasets The VQA v2 dataset [15] serves as the princi-
pal current benchmark for VQA. The heavy class imbalance
among answers makes it very difficult to draw meaningful
conclusions or perform a qualitative evaluation, however.
We additionally propose a series of experiments on a sub-
set referred to as VQA-Numbers. It includes all questions
marked in VQA v2 as a “number” question, which are fur-
ther cleaned up to remove answers appearing less than 1,000
times in the training set, and to remove questions that do
not have an unambiguous answer (we keep only those with
ground truth scores containing a single element equal to
1.0). Questions from the original validation set of VQA v2
are used for evaluation, and the original training set (45,965
questions after clean up) is used for training, support, and
validation. The precise data splits will be available pub-
licly. Most importantly, the resulting set of candidate an-
swers corresponds to the seven numbers from 0 to 6.

Metrics The aggregate metric used for evaluation on VQA
v2 is the accuracy defined as 147 3=, 5% with ground truth
scores 5; and af the answer of highest predicted score,
arg max, s;. We also define the recall of an answer a as

;s ) 37,5%. We look at the recall averaged (uni-
formly) over all possible answers to better reflect perfor-
mance across a variety of answers, rather than on the most
common ones.

Implementation Our implementation is based on the
code provided by the authors of [34]. Details non-specific
to our contributions can be found there. We initialize all pa-
rameters, in particular static weights and static prototypes
as if they were those of a linear layer in a traditional archi-
tecture, following Glorot and Bengio [14]. During training,
the support set is subsampled (Section 4.2) to yield a set of
1,000 elements. We use, per answer, one or two static pro-
totypes, and zero or one dynamic prototype (as noted in the
experiments). All experiments use an embedding dimen-
sion D=128 and a mini-batches of 256 instances. Experi-
ments with VOA v2 use a set of candidate answers capped
to a minimum number of training occurrences of 16, giv-
ing 1,960 possible answers [34]. Past works have shown
that small differences in implementation can have notice-
able impact on performance. Therefore, to ensure fair com-
parisons, we repeated all evaluations of the baseline [34]
with our code and preprocessing. Results are therefore not
directly comparable with those reported in [34]. In particu-



Average answer recall

(la) Chance 14.28
(1b) State-of-the-art model [34] 29.72
Equivalent to 1 static prototype per answer, dot prod. similarity, no dynamic param.
(2b) 1 Static prot./ans., L1 similarity 29.97
(2¢) 1 Static prot./ans., L2 similarity 27.80
(2d) 2 Static prot./ans., dot prod. similarity 30.28
(2e) 2 Static prot./ans., L1 similarity 28.34
(2f) 2 Static prot./ans., L2 similarity 31.48
(3a) Dynamic Weights (+2f) 31.81
(3b) Proposed: dynamic weights and prototypes (+2f) 32.32

Table 1. Ablative evaluation on VQA-Numbers, trained and evalu-
ated on all answers. See discussion in Section 5.1.

lar, we do not use the Visual Genome dataset [22] for train-
ing.

5.1. VQA-Numbers

Ablative evaluation We first evaluate the components of
the proposed model in comparison to the state-of-the-art
of [34] which serves as a baseline, being equivalent to our
model with 1 static prototype per answer, the dot prod-
uct similarity, and no dynamic parameters. We train and
evaluate on all 7 answers. To provide the baseline with a
fair chance®, we train all models with standard supersam-
pling [9, 16], i.e. selecting training examples with equal
probability with respect to their correct answer. In these
experiments, the support set is equal to the training set.

As reported in Table 1, the proposed dynamic weights
improve over the baseline, and the dynamic prototypes
bring an additional improvement. We compare different
choices for the similarity function. Interestingly, swapping
the dot product in the baseline for an L2 distance has a nega-
tive impact. When using two static prototypes however, the
L2 distances proves superior to the L1 or to the dot product.
This is consistent with [33] where a prototypes network also
performed best with an L2 distance.

Additional Support Set and Novel answers We now
evaluate the ability of the model to exploit support data
never seen until test time (see Fig. 3). We train the same
models designed for 7 candidate answers, but only provide
them with training data for a subset of them. The proposed
model is additionally provided with a complete support set,
covering all 7 answers. Each reported result is averaged
over 10 runs. The set of k£ answers excluded from training
is randomized across runs but identical to all models for a
given k.

The proposed model proves superior than the baseline
and all other ablations (Fig. 3, top). The dynamic prototypes
are particularly beneficial. With very little training data, the
use of dynamic weights is less effective and sometimes even

2The VQA-Numbers data is still heavily imbalanced, “1” and “2” mak-
ing up almost 60% of correct answers in equal parts.
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Figure 3. Performance of the proposed model and ablations on
VQA-Numbers with training data for a subset of the 7 answers.
(Top) Performance on all answers. (Bottom) Performance on an-
swers not seen in training. Only the model with dynamic proto-
types makes this setting possible. Remarkably, a model trained on
two answers (2/7) maintains a capacity to learn about all others.
Chance baseline shown as horizontal dashes.

detrimental. We hypothesize that the model may then suf-
fer from overfitting due to the additional learned parame-
ters. When evaluated on novel answers (not seen during
training and only present in the test-time support set), the
dynamic prototypes provide a remarkable ability to learn
those from the support set alone (Fig. 3, bottom). Their effi-
cacy is particularly strong when only a single novel answer
has to be learned. Remarkably, a model trained on only
two answers maintains some capacity to learn about all oth-
ers (average recall of 17.05%, versus the chance baseline of
14.28%). Note that we cannot claim the ability of the model
to count to those novel numbers, but at the very least it is
able to associate those answers with particular images/ques-
tions (possibly utilizing question-conditioned biases).

5.2. VQA v2

We performed experiments on the complete VOA v2
dataset. We report results of different ablations, trained
with 50% or 100% of the official training set, evaluated on
the validation set as in [34]. The proposed model uses the
remaining of the official training set as additional support
data at test time. The complexity and varying quality of
this dataset do not lead to clear-cut conclusions from the
standard accuracy metric (see Table 2). The answer recall
leads to more consistent observations that align with those
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Figure 4. Performance using varying amounts of training data on
VQA v2. See Section 5.2.

Question accuracy / Answer recall
Trained on 50% Trained on 100%

Baseline [34] 57.6/14.0 59.8/15.8

Proposed model

With dynamic weights, no dynamic prototypes ~ 57.6/ 14.1 60.0/16.3

No dynamic weights, with dynamic prototypes ~ 57.6/15.2 59.7/18.0
Same, no static prototypes, only dyn. ones 57217 3.6 58.6/ 4.29

With dyn. weights and dyn. prototypes 57.5/15.5 59.9/18.0

Table 2. Evaluation on VQA v2. The proposed method exhibits
qualitatively different strengths than the classical approach of the
baseline [34], producing a generally higher recall (averaged over
possible answers) and lower accuracy (averaged over questions).

+1/2
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luh‘ M\H\h Il \‘ ‘\H.\ Il ‘\L 10

[
i
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(Proposed -
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Candidate answers a sorted by decreasing frequency in training set

Figure 5. Difference in answer recall between the proposed model
(Table 2, last row, last column) and the baseline (Table 2, first row,
last column) on VQA v2. Each blue bar corresponds to one of
the candidate answers, sorted decreasing number of occurrences
in the training set (gray background, units not displayed). The
two models show qualitatively different behaviour: the baseline
is effective with frequent answers, but the proposed model fares
better (mostly positive values) in the long tail of rare answers.

made on VQA-Numbers. Both dynamic weights and dy-
namic parameters provide a consistent advantage (Fig. 4).
Each technique is beneficial in isolation, but their combina-
tion performs generally best. Individually, the dynamic pro-
totypes appear more impactful than the dynamic weights.
Note that our experiments on VQA v2 aimed at quantifying
the effect of the contributions in the meta learning setting,
and we did not seek to maximize absolute performance in
the traditional benchmark setting.

To obtain a better insight into the predictions of the

model, we examine the individual recall of possible an-
swers. We compare the values with those obtained by the
baseline. The difference (Fig. 5) indicates which of the
two models provides the best predictions for every answer.
We observe a qualitatively different behaviour between the
models. While the baseline is most effective with frequent
answers, the proposed model fares better (mostly positive
values) in the long tail of rare answers. This corroborates
previous discussions on dataset biases [15, 18, 43] which
classical models are prone to overfit to. The proposed model
is inherently more robust to such behaviour.

6. Conclusions and Future Work

We have devised a new approach to VQA through fram-
ing it as a meta learning task. This approach enables us to
provide the model with supervised data at test time, thereby
allowing the model to adapt or improve as more data is
made available. We believe this view could lead to the de-
velopment of scalable VQA systems better suited to prac-
tical applications. We proposed a deep learning model that
takes advantage of the meta learning scenario, and demon-
strated a range of benefits: improved recall of rare answers,
better sample efficiency, and a unique capability of to learn
to produce novel answers, i.e. those never seen during train-
ing, and learned only from support instances.

The learning-to-learn approach we propose here enables
a far greater separation of the questions answering method
from the information used in the process than has previously
been possible. Our contention is that this separation is es-
sential if vision-and-language methods are to move beyond
benchmarks to tackle real problems, because embedding all
of the information a method needs to answer real questions
in the model weights is impractical.

Even though the proposed model is able to use novel
support data, the experiments showed room for improve-
ment, since a model trained initially from the same amount
of data still shows superior performance. Practical consid-
erations should also be addressed to apply this model to a
larger scale, in particular for handling the memory of dy-
namic weights that currently grows linearly with the sup-
port set. Clustering schemes could be envisioned to reduce
its size [33] and hashing methods [4, 19] could improve the
efficiency of the content-based retrieval.

Generally, the handling of additional data at test time
opens the door to VQA systems that interact with other
sources of information. While the proposed model was
demonstrated with a support set of questions/answers, the
principles extend to any type of data obtained at test time
e.g. from knowledge bases or web searches. This would
drastically enhance the scalability of VQA systems.
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Supplementary material

A. Factorized Non-Linear Transformation

We defined in Eq. | our non-linear transformations us-
ing weights (static or dynamic) € containing all the pa-
rameters of a gated tanh layer. Although this is sound in
principle, it is computationally costly to handle a memory
containing dynamic weights of such a large dimensionality
(2D? + 2D). To alleviate this, we follow [7] and factor-
ize the parameters of the gated tanh layer, rewriting Eq. 1 as
follows:

fo(h) = o(w,Wyh+b) o tanh (w,W,h+b") (7)

with vectors w,,w!, € RP and matrices W;,, W] €
RP*D_ The matrices W; and Wé are learned like tradi-
tional weights, and only w, and w/, are those incorporated
into the vector of weights 6 (static or dynamic). This re-
duces the dimensionality of @ from (2D? + 2D) to 4D (ac-

counting for w,, wy, b, and b’).

B. Bias in the Output Mapping

In Eq.3, the output mapping to answer scores uses a
scalar bias term. This is different to the vector bias in a
classical model that use a linear (affine) layer to implement
ga(+). A vector contains a value for each output class (i.e.
each candidate answer), whereas our formulation uses a sin-
gle value shared among all of them. Our formulation helps
avoid the model incorporating biases towards frequent train-
ing answers, as discussed in Section 1 and 2. This feature
is essential to enable the capability of our model to produce
novel answers (unseen during training) only demonstrated
by instances in the support set. A vector of answer-specific
biases would prevent this capability, as the bias for the novel
answers can not be learned from training data.

Completely removing the bias term is another option. At
test time, it is without effect compared to a scalar bias, since
it is only followed by a (monotonic) sigmoid. Removing
the bias term however renders the training by gradient de-
scent numerically unstable, because the chosen similarity
function can map to saturating regions of the domain of the
sigmoid.

C. VQA-Numbers Dataset

We provide below statistics of the VQA-Numbers dataset.

Correct answer Row
0 1 2 3 4 5 6 sum

Training/validation/support set
2,529 8,193 7,030 2,485 1,520 579 602 22,938
11.0% 35.7% 30.7% 10.8% 6.6% 2.6% 2.6% 100%
Test set

858 2,804 2,434 843 495 173 205 7,812
11.0% 35.9% 31.2% 10.8% 6.3% 2.2% 2.6% 100%

Table 3. Number and ratio of questions per type of correct answer
in the VOA-Numbers dataset.

D. VQA-Numbers Experiments

Our experiments on VQA-Numbers (Section 5.1) use su-
persampling during training to ensure that none of the com-
pared models can be influenced by dataset biases (i.e. class
imbalance). The supersampling is performed at the epoch
level, not at the mini-batch level. Concretely, the training
instances of all answers (classes) except the most frequent
one are repeated at random such that there are as many of
them as instances with the most frequent one. The elements
within a mini-batch are selected at random. Each training
epoch will thus go through every training instance at least
once. We did not try to constrain the sampling within mini-
batches.

Note finally that the supersampling strategy is practical
on VQA-Numbers thanks to the small number of classes
and only mild imbalance. It would not be suitable to VOA
v2 for the opposite reasons.

100
90 -
80
70 -
60 -
50 -
40 -
30 -
20 -
10 -
0

T T T T T

Il Baseline: static weights, static prototypes
With dynamic weights |

I With dynamic weights and dynamic prototypes

LI

7 477 5/7 6/7 717
Answers in the training set

Kecall OI answers seen 11 training

Figure 6. Additional results of the experiments of Fig. 3. Perfor-
mance is reported here only on answers seen in the training set.
See text for discussion.

We provide in Fig. 6 additional results of the experi-
ments of Section 5.1. We report the performance of the
same models, now evaluated only on answers present in the
training set. The number of those answers is varied from 1
to 7. The chance performance (gray dashes) diminishes as
the number of possible answers gets larger. As expected, the



baseline model performs at 100% recall in the trivial case of
1 possible answer. The proposed model however receives a
support set containing examples of all other answers (i.e. all
7 of them). This explains the non-perfect result in the trivial
case. As the number of possible answers is increased, the
proposed models (with dynamic weights and dynamic pro-
totypes) shows a growing advantage and finally surpass the
baseline by a clear margin on the most interesting cases of
5, 6, and 7 answers.



