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Abstract

Despite a lack of theoretical understanding, deep neural networks have achieved unparalleled performance
in a wide range of applications. On the other hand, shallow representation learning with component analysis
is associated with rich intuition and theory, but smaller capacity often limits its usefulness. To bridge this
gap, we introduce Deep Component Analysis (DeepCA), an expressive multilayer model formulation that
enforces hierarchical structure through constraints on latent variables in each layer. For inference, we
propose a differentiable optimization algorithm implemented using recurrent Alternating Direction Neural
Networks (ADNNSs) that enable parameter learning using standard backpropagation. By interpreting feed-
forward networks as single-iteration approximations of inference in our model, we provide both a novel
theoretical perspective for understanding them and a practical technique for constraining predictions with
prior knowledge. Experimentally, we demonstrate performance improvements on a variety of tasks, including
single-image depth prediction with sparse output constraints.

1 Introduction

Deep convolutional neural networks have achieved remarkable success in the field of computer vision. While
far from new [1], the increasing availability of extremely large, labeled datasets along with modern advances
in computation with specialized hardware have resulted in state-of-the-art performance in many problems, in-
cluding essentially all visual learning tasks. Examples include image classification [2], object detection [3], and
semantic segmentation [4]. Despite a rich history of practical and theoretical insights about these problems,
modern deep learning techniques typically rely on task-agnostic models and poorly-understood heuristics. How-
ever, recent work [5H7] has shown that specialized architectures incorporating classical domain knowledge can
increase parameter efficiency, relax training data requirements, and improve performance.

Prior to the advent of modern deep learning, optimization-based methods like component analysis and sparse
coding dominated the field of representation learning. These techniques use structured matrix factorization to
decompose data into linear combinations of shared components. Latent representations are inferred by mini-
mizing reconstruction error subject to constraints that enforce properties like uniqueness and interpretability.
Unlike feed-forward alternatives that construct representations in closed-form via independent feature detectors,
this optimization-based approach naturally introduces conditional dependence between features in order to best
explain data, a useful phenomenon commonly referred to as “explaining away” within the context of graphical
models [8]. An example of this effect is shown in Fig. [1| which compares sparse representations constructed
using feed-forward soft thresholding with those given by optimization-based inference with an ¢; penalty. While
many components in an overcomplete set of features may have high-correlation with an image, constrained
optimization introduces competition between components resulting in more parsimonious representations.

Component analysis methods are also often guided by intuitive goals of incorporating prior knowledge into
learned representations. For example, statistical independence allows for the separation of signals into distinct
generative sources [9], non-negativity leads to parts-based decompositions of objects [10], and sparsity gives rise
to locality and frequency selectivity [11]. Due to the difficulty of enforcing intuitive constraints like these with
feed-forward computations, deep learning architectures are instead often motivated by distantly-related biolog-
ical systems [12] or poorly-understand internal mechanisms such as covariate shift [13] and gradient flow [14].
Furthermore, while a theoretical understanding of deep learning is fundamentally lacking [15], even non-convex
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Figure 1: An example of the “explaining away” conditional dependence provided by optimization-based infer-
ence. Sparse representations constructed by feed-forward nonnegative soft thresholding (a) have many more
non-zero elements due to redundancy and spurious activations (c¢). On the other hand, sparse representations
found by ¢;-penalized, nonnegative least-squares optimization (b) yield a more parsimonious set of components
(d) that optimally reconstruct approximations of the data.
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Figure 2: A comparison between feed-forward neural networks and the proposed deep component analysis
(DeepCA) model. While standard deep networks construct learned representations as feed-forward compositions
of nonlinear functions (a), DeepCA instead treats them as unknown latent variables to be inferred by constrained
optimization (b). To accomplish this, we propose a differentiable inference algorithm that can be expressed as
an Alternating Direction Neural Network (ADNN), a recurrent generalization of feed-forward networks (c¢) that
can be unrolled to a fixed number of iterations for learning via backpropagation (d).

formulations of matrix factorization are often associated with guarantees of convergence , generalization ,
uniqueness , and even global optimality .

In order to unify the intuitive and theoretical insights of component analysis with the practical advances
made possible through deep learning, we introduce the framework of Deep Component Analysis (DeepCA). This
novel model formulation can be interpreted as a multilayer extension of traditional component analysis in which
multiple layers are learned jointly with intuitive constraints intended to encode structure and prior knowledge.
DeepCA can also be motivated from the perspective of deep neural networks by relaxing the implicit assumption
that the input to a layer is constrained to be the output of the previous layer, as shown in Eq. [I| below. In a
feed-forward network (left), the output of layer j, denoted a;, is given in closed-form as a nonlinear function
of aj_1. DeepCA (right) instead takes a generative approach in which the latent variables w; associated with
layer j are inferred to optimally reconstruct w;_; as a linear combination of learned components subject to
some constraints C;.

Feed-Forward: a; = ¢(BjTaj_1) = DeepCA: Bw; = w;_; s.t. w; €(; (1)

From this perspective, intermediate network “activations” cannot be found in closed-form but instead re-
quire explicitly solving an optimization problem. While a variety of different techniques could be used for
performing this inference, we propose the Alternating Direction Method of Multipliers (ADMM) . Impor-
tantly, we demonstrate that after proper initialization, a single iteration of this algorithm is equivalent to a pass
through an associated feed-forward neural network with nonlinear activation functions interpreted as proximal
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Figure 3: A demonstration of DeepCA applied to single-image depth prediction using images concatenated
with sparse sets of known depth values as input. Baseline feed-forward networks are not guaranteed to produce
outputs that are consistent with the given depth values. ADNNs with an increasing number of iterations
(T > 1) learn to satisfy the sparse output constraints, resolving ambiguities for more accurate predictions
without unrealistic discontinuities.

operators corresponding to penalties or constraints on the coefficients. The full inference procedure can thus be
implemented using Alternating Direction Neural Networks (ADNN), recurrent generalizations of feed-forward
networks that allow for parameter learning using backpropagation. A comparison between standard neural
networks and DeepCA is shown in Fig. [2| Experimentally, we demonstrate that recurrent passes through con-
volutional neural networks enable better sparsity control resulting in consistent performance improvements in
both supervised and unsupervised tasks without introducing any additional parameters.

More importantly, DeepCA also allows for other constraints that would be impossible to effectively enforce
with a single feed-forward pass through a network. As an example, we consider the task of single-image depth
prediction, a difficult problem due to the absence of three-dimensional information such as scale and perspective.
In many practical scenarios, however, sparse sets of known depth outputs are available for resolving these
ambiguities to improve accuracy. This prior knowledge can come from additional sensor modalities like LIDAR,
or from other 3D reconstruction algorithms that provide sparse depths around textured image regions. Feed-
forward networks have been proposed for this problem by concatenating known depth values as an additional
input channel . However, while this provides useful context, predictions are not guaranteed to be consistent
with the given outputs leading to unrealistic discontinuities. In comparison, DeepCA enforces the constraints by
treating predictions as unknown latent variables. Some examples of how this behavior can resolve ambiguities
are shown in Fig. [3] where ADNNs with additional iterations learn to propagate information from the given
depth values to produce more accurate predictions.

In addition to practical advantages, our model also provides a novel perspective for conceptualizing deep
learning techniques. Due to the decoupling of layers provided by relaxing the feed-forward function composition
constraints, DeepCA can be equivalently expressed as a shallow model augmented with architecture-dependent
structure imposed on the model parameters. In the case of rectified linear unit (ReLU) activation functions [22],
this allows for the direct application of results from sparse approximation theory, suggesting new insights towards
better understanding why deep neural networks are so effective.



2 Background and Related Work

In order to motivate our approach, we first provide some background on matrix factorization, component
analysis, and deep neural networks.

2.1 Component Analysis and Matrix Factorization

Component analysis is a common approach for shallow representation learning that approximately decomposes
data € R into linear combinations of learned components in B € R%**. This is typically accomplished by
minimizing reconstruction error subject to constraints C on the coefficients that serve to resolve ambiguity or
incorporate prior knowledge such as low-rank structure or sparsity. Some examples include Principal Component
Analysis (PCA) |23] for dimensionality reduction and sparse dictionary learning [16] which accommodates
overcomplete representations by enforcing sparsity.

While component analysis problems are typically non-convex, their structure naturally suggests simple
alternating minimization strategies that are often guaranteed to converge [24]. However, unlike backpropagation
with stochastic gradient descent, these techniques typically require careful initialization in order to avoid poor
local minima. Alternatively, we consider a nested optimization problem that separates learning from inference:

argéninz %Hw(i) — Bf(wm)H% st. f(x) = argerrclin% [l — Bw||§ (2)
i=1 w

Here, the inference function f : R? — R* is a potentially nonlinear transformation that maps data to their
corresponding representations by solving an optimization problem with fixed parameters. For unconstrained
PCA with orthogonal components, this inference problem has a simple closed-form solution given by the linear
transformation fPCA(;L') = BTx. Substituting this into Eq. |2 results in a linear autoencoder with one hidden
layer and tied weights, which has the same unique global minimum but can be trained by backpropagation [25].

With general constraints, inference typically cannot be accomplished in closed form but must instead rely on
an iterative optimization algorithm. However, if this algorithm is composed as a finite sequence of differentiable
transformations, then the model parameters can still be learned in the same way by backpropagating gradients
through the steps of the inference algorithm. We extend this idea by representing an algorithm for inference in
our DeepCA model as a recurrent neural network unrolled to a fixed number of iterations.

2.2 Deep Neural Networks

Recently, deep neural networks have emerged as the preferred alternative to component analysis for represen-
tation learning of visual data. Their ability to jointly learn multiple layers of abstraction has been shown to
allow for encoding increasingly complex features such as textures and object parts [26]. Unlike with component
analysis, inference is given in closed-form by design. Specifically, a representation is constructed by passing an
image « through the composition of alternating linear transformations with parameters B; and b; and fixed
nonlinear activation functions ¢; for layers j = 1,...,[ as follows:

FON(@) = ¢1(B] - 62(BI (91(B{a — b1) = by) -+~ — by) ©)

Instead of considering the forward pass of a neural network as an arbitrary nonlinear function, we interpret
it as a method for approximate inference in an unsupervised generative model. This follows from previous
work which has shown it to be equivalent to bottom-up inference in a probabilistic graphical model [27] or
approximate inference in a multi-layer convolutional sparse coding model [28,[29]. However, these approaches
have limited practical applicability due to their reliance on careful hyperparameter selection and specialized
optimization algorithms. While ADMM has been proposed as a gradient-free alternative to backpropagation
for parameter learning [30], we use it only for inference which allows for simpler learning using backpropagation
with arbitrary loss functions.

Aside from ADNNS, recurrent feedback has been proposed in other models to improve performance by
iteratively refining predictions, especially for applications such as human pose estimation or image segmentation
where outputs have complex correlation patterns [31133]. While some methods also implement feedback by
directly unrolling iterative algorithms, they are often geared towards specific applications such as graphical
model inference [34]35], solving under-determined inverse problems [3638|, or image alignment [5]. Similar



to [39], DeepCA provides a general mechanism for feedback in arbitrary neural networks, but it is motivated by
the more interpretable goal of minimizing reconstruction error subject to constraints on network activations.

3 Deep Component Analysis

Deep Component Analysis generalizes the shallow inference objective function in Eq.[2]by introducing additional

layers j = 1,...,1 with parameters B; € RP/-1*Pi_ Optimal DeepCA inference is then accomplished by solving:
l
f*(ib) = ar{gm}inz % ||'wj_1 — Bj’ij; + <I)j(wj) s.t. wog=x (4)
w; =1

Instead of constraint sets C;, we use penalty functions ®; : RP» — R to enable more general priors. Note
that hard constraints can still be represented by indicator functions I(w; € C;) that equal zero if w; € C;
and infinity otherwise. While we use pre-multiplication with a weight matrix B; to simplify notation, our
method also supports any linear transformation by replacing transposed weight matrix multiplication with its
corresponding adjoint operator. For example, the adjoint of convolution is transposed convolution, a popular
approach to upsampling in convolutional networks [40].

If the penalty functions are convex, this problem is also convex and can be solved using standard optimization
methods. While this appears to differ substantially from inference in deep neural networks, we later show that it
can be seen as a generalization of the feed-forward inference function in Eq. [3| In the remainder of this section,
we justify the use of penalty functions in lieu of explicit nonlinear activation functions by drawing connections
between non-negative ¢; regularization and ReLU activation functions. We then propose a general algorithm
for solving Eq. [] for the unknown coefficients and formalize the relationship between DeepCA and traditional
deep neural networks, which enables parameter learning via backpropagation.

3.1 From Activation Functions to Constraints

Before introducing our inference algorithm, we first discuss the connection between penalties and their nonlinear
proximal operators, which forms the basis of the close relationship between DeepCA and traditional neural
networks. Ubiquitous within the field of convex optimization, proximal algorithms [41] are methods for solving
nonsmooth optimization problems. Essentially, these techniques work by breaking a problem down into a
sequence of smaller problems that can often be solved in closed-form by proximal operators ¢ : RY — R¢
associated with penalty functions ® : R? — R given by the solution to the following optimization problem,
which generalizes projection onto a constraint set:

$(w) = argmin § w — w5 + ®(w) (5)

Within the framework of DeepCA, we interpret nonlinear activation functions in deep networks as proximal
operators associated with convex penalties on latent coefficients in each layer. While this connection cannot be
used to generalize all nonlinearities, many can naturally be interpreted as proximal operators. For example, the
sparsemax activation function is a projection onto the probability simplex [42]. Similarly, the ReLU activation
function is a projection onto the nonnegative orthant. When used with a negative bias b, it is equivalent to
nonnegative soft-thresholding Sgr , the proximal operator associated with nonnegative ¢; regularization:

o (w) = I(w > 0) + 0, [wy| = 6 (w) = (w) = ReLU(w — b) (6)

While this equivalence has been noted previously as a means to theoretically analyze convolutional neural
networks [28], DeepCA supports optimizing the bias b as an ¢; penalty hyperparameter via backpropagation
for adaptive regularization, which results in better control of representation sparsity.

In addition to standard activation functions, DeepCA also allows for enforcing additional constraints that
encode prior knowledge. For our example of single-image depth prediction with a sparse set of known outputs
y provided as prior knowledge, the penalty function on the final output w; is ®;(w;) = I(Sw; = y) where
the selector matrix S extracts the indices corresponding to the known outputs in y. The associated proximal
operator ¢; projects onto this constraint set by simply correcting the outputs that disagree with the known
constraints. Note that this would not be an effective output nonlinearity in a feed-forward network because,



while the constraints would be technically satisfied, there is nothing to enforce that they be consistent with
neighboring predictions leading to unrealistic discontinuities. In contrast, DeepCA inference minimizes the
reconstruction error at each layer subject to these constraints by taking multiple iterations through the network.

3.2 Inference by the Alternating Direction Method of Multipliers

With the model parameters fixed, we solve our DeepCA inference problem using the Alternating Direction
Method of Multipliers (ADMM), a general optimization technique that has been successfully used in a wide
variety of applications [20]. To derive the algorithm applied to our problem, we first modify our objective
function by introducing auxiliary variables z; that we constrain to be equal to the unknown coefficients w;, as
shown in Eq. [7] below.

l
. 2 .
argmmZ% lzj—1—Bjw;|5 + ®;(z;) st. wo=2a,Vj:w;=z; (7)
{wjizi} 75

From this, we construct the augmented Lagrangian £, with dual variables A and a quadratic penalty
hyperparameter p = 1 that can affect convergence speed:

l
2 2
L, =Y 3lzio = Biw,lls + ®5(z) + A (w; — z5) + § w; — 23 (8)
=1

The ADMM algorithm then proceeds by iteratively minimizing £, with respect to each set of variables with
the others fixed, breaking our full inference optimization problem into smaller pieces that can each be solved
in closed form. Due to the decoupling of layers in our DeepCA model, the latent activations can be updated
incrementally by stepping through each layer in succession, resulting in faster convergence and updates that
mirror the computational structure of deep neural networks. With only one layer, our objective function is
separable and so this algorithm reduces to the classical two-block ADMM, which has extensive convergence
guarantees [20]. For multiple layers, however, this algorithm can be seen as an instance of the cyclical multi-
block ADMM with quadratic coupling terms. While our experiments have shown this approach to be effective
in our applications, theoretical analysis of its convergence properties is still an active area of research [43].

A single iteration of our algorithm proceeds by taking the following steps for all layers j =1,... 1

1. First, w; is updated by minimizing the Lagrangian after fixing the associated auxiliary variable z; from
the previous iteration along with that of the previous layer z;_; from the current iteration:

w1 = argmin o, 2,210, ®

wj
—1
- (BJTBj + pI) (B}zg-tjll] + ng-t] — )\g-t])

The solution to this unconstrained least squares problem is found by solving a linear system of equations.

2. Next, z; is updated by fixing the newly updated w; along with the next layer’s coefficients w;,; from
the previous iteration:
zgtﬂ] = arg min Ep('wgtﬂ], wﬂp zj, )\gt]) (10)
2j
- 1 (] [t+1] | 14[1]
= ¢ (53 Bjriwypy + S (w7 4 SA)
t+1] | t+1 t
zE [ gbj('wg I %Ag])

This is the proximal minimization problem from Eq. [5| so its solution is given in closed form via the
proximal operator ¢, associated with the penalty function ®;. For j # [, its argument is a convex
combination of the current coefficients w; and feedback that enforces consistency with the next layer.

3. Finally, the dual variables A; are updated with scaled constraint violations.

[t+1] . (1] [t+1] [t+1]
Aj = A +p(wj -z ) (11)

This process is then repeated until convergence. Though not available as a closed-form expression, in the
next section we demonstrate how this algorithm can be posed as a recurrent generalization of a feed-forward
neural network.



Algorithm 1: Feed-Forward Algorithm 2: Alternating Direction Neural Network

Input: x, {B,,b;} Input: z, {B,,b;}
Ol:lt‘pll.t: {w;}, {2} Output: {wE.T]} {z[.T]}
Initialize: 2o = @ Initialize: (A"} = 0, {w!!), 2/} from Alg.[{

for j=1,...,ldo
2 eation: fort=1,....T—1do
re-activation: for j=1,...,ldo

w; =BTz
: 5=l Dual: Update /\[-t] (Eq.

Activation:
zj = ¢j(w; — b)) Pre-activation: Update 'wg +l (Eq. )
end Activation: Update zEH ] (Eq. |
end
end

4 Alternating Direction Neural Networks

Our inference algorithm essentially follows the same pattern as a deep neural network: for each layer, a learned
linear transformation is applied to the current output followed by a fixed nonlinear function. Building upon
this observation, we implement it using a recurrent network with standard layers, thus allowing the model
parameters to be learned using backpropagation.

Recall that the w; update in Eq. |§| requires solving a linear system of equations. While differentiable,
this introduces additional computational complexity not present in standard neural networks. To overcome
this, we implicitly assume that the parameters in over-complete layers are Parseval tight frames, i.e. so that
BjB]T = 1. This property is theoretically advantageous in the field of sparse approximation [44] and has been
used as a constraint to encourage robustness in deep neural networks [45]. However, in our experiments we
found that it was unnecessary to explicitly enforce this assumption during training; with appropriate learning
rates, backpropagating through our inference algorithm was enough to ensure that repeated iterations did not
result in diverging sequences of variable updates. Thus, under this assumption, we can simplify the update in
Eq. 0] using the Woodbury matrix identity as follows:

wgtﬂ] = [t] + pilBT(zgt U_ B, z[t]) th] = gt] — )\g] (12)

As this only involves simple linear transformations, our ADMM algorithm for solving the optimization
problem in our inference function f* can be expressed as a recurrent neural network that repeatedly iterates until
convergence. In practice, however, we unroll the network to a fixed number of iterations 7" for an approximation
of optimal inference so that f (7] (x) = f*(x). Our full algorithm is summarized in Algs. |1 and

4.1 Generalization of Feed-Forward Networks

Given proper initialization of the variables, a single iteration of this algorithm is identical to a pass through a

feed-forward network. Specifically, if we let ABO] =0 and zgol BJT g ] 1, Where we again denote z[ I = = x, then
wgl] is equivalent to the pre-activation of a neural network layer:
1 ._ [0] 1 RpT/, ] T, 0l T, 01
w; = Jrp-‘rlB (z] liB (BJ Jj— 1)) Bj j—1 (13)
Similarly, if we initialize 'w[ ] 11 =B, +1'w[ } then z[l] is equivalent to the corresponding nonlinear activation
using the proximal operator ¢J
1 1 1
A = (7B (B wl) + 227wl = ¢ (wl) (14)

Thus, one iteration of our inference algorithm is equivalent to the standard feed-forward neural network given
in Eq. 3} i.e. f [1] (x) = fD NN(w), where nonlinear activation functions are interpreted as proximal operators
corresponding to the penalties of our DeepCA model. Additional iterations through the network lead to more
accurate inference approximations while explicitly satisfying constraints on the latent variables.



4.2 Learning by Backpropagation

With DeepCA inference approximated by differentiable ADNNs, the model parameters can be learned in the
same way as standard feed-forward networks. Extending the nested component analysis optimization problem
from Eq. [2, the inference function f (T} can be used as a generalization of feed-forward network inference f (1)
for backpropagation with arbitrary loss functions L that encourage the output to be consistent with provided
supervision y¥, as shown in Eq. below. Here, only the latent coefficients fET] (a:(i)) from the last layer are
shown in the loss function, but other intermediate outputs j # [ could also be included.

argminZL(fET] (™), y(i)) (15)
{ijbj} i=1

From an agnostic perspective, an ADNN can thus be seen as an end-to-end deep network architecture with a
particular sequence of linear and nonlinear transformations and tied weights. More iterations (T > 1) result in
networks with greater effective depth, potentially allowing for the representation of more complex nonlinearities.
However, because the network architecture was derived from an algorithm for inference in our DeepCA model
instead of arbitrary compositions of parameterized transformations, the greater depth requires no additional
parameters and serves the very specific purpose of satisfying constraints on the latent variables while enforcing
consistency with the model parameters.

4.3 Theoretical Insights

In addition to the practical advantages of recurrent ADNNs for constraint satisfaction, our DeepCA model
provides a useful theoretical tool for better understanding traditional neural networks. In prior work, Papyan et
al. analyzed feed-forward networks as a method for approximate inference in a multilayer convolutional sparse
coding model [28], which can be seen as a special case of DeepCA with overcomplete dictionaries and fixed
constraints on the sparsity of the coefficients subject to exact reconstructions in each layer. Specifically, they
provide conditions under which the activations of a feed-forward convolutional network with ReLLU nonlinearities
approximate the true coefficients of their model with bounded error and exact support recovery. While these
conditions are likely too strict to be satisfied in practice (see Fig. [1} for example), the theoretical connection
emphasizes the importance of sparsity and demonstrates the potential for analyzing deep neural networks from
the perspective of sparse approximation theory.

Our more general DeepCA model introduces penalties that relax the requirement of exact reconstruction at
each layer, effectively introducing errors that break up the standard compositional structure of neural networks.
Importantly, this decoupling of layers allows our original multilayer inference function in Eq. [4] to be expressed
as the equivalent shallow learning problem:

T B, 0 0 w1 ? I
f*(x) = argmin = N o7 . + Z O, (w;) (16)
{w;} : : - 0 : j=1
0 0 -1 By w;

2

With nonnegative ¢; penalties corresponding to biased ReLU activation functions, this is simply an augmented,
higher-dimensional nonnegative sparse coding problem in which the dictionary is constrained to have a particular
block structure that relates to the architecture of the corresponding neural network. This suggests that nonlinear
function composition may not be necessary for effective deep learning, but instead the implicit structure that
it enforces.

This connection to shallow learning allows for the direct application of results from the field of sparse ap-
proximation theory. For example, despite being able to exactly reconstruct any datapoint, if overcomplete
dictionaries satisfy certain incoherence properties, then the sparsest set of reconstruction coefficients may ac-
tually be unique |46]. Uniqueness is an important characteristic of learned representations that are able to
memorize data, a prominent feature in many effective deep architectures [47]. While standard shallow models
are typically incapable of satisfying the properties required for uniqueness in high-dimensional datasets like
those common in the field of computer vision, DeepCA suggests that the increased capacity of deep networks
can be explained by the structure imposed on the augmented dictionaries of Eq. Higher-dimensionality
allows for richer unique representations with a greater number of non-zero elements while the block structure
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Figure 4: A demonstration of the effects of fixed (solid lines) and learnable (dotted lines) bias parameters on
the reconstruction error (a) and activation sparsity (b-d) comparing feed forward networks (blue) with DeepCA
(red). All models consist of three layers each with 512 components. Due to the conditional dependence provided
by recurrent feedback, DeepCA learns to better control the sparsity level in order improve reconstruction error.
As 07 regularization weights, the biases converge towards zero resulting in denser activations and higher network
capacity for reconstruction.
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Figure 5: The effect of increasing model size on training (a) and testing (b) classification error, demonstrating
consistently improved performance of ADNNs over feed-forward networks, especially in larger models. The base
model consists of two 3 x 3, 2-strided convolutional layers followed by one fully-connected layer with 4, 8, and
16 components respectively. Also shown are is the classification error throughout training (c).

reduces the number of free parameters that need to be learned. Uniqueness guarantees can also apply to solu-
tions of sparse nonnegative least squares problems even without explicitly enforcing sparsity , which may
help to explain the success of deep networks without explicit bias terms . More broadly, we believe that
DeepCA opens up a fruitful new direction for future research towards the principled design of neural network
architectures that optimize capacity for sparse representation by enforcing implicit structure on the augmented
dictionaries of their associated shallow models.

5 Experimental Results

In this section, we demonstrate some practical advantages of more accurate inference approximations in our
DeepCA model using recurrent ADNNs over feed-forward networks. Even without additional prior knowledge,
standard convolutional networks with ReLLU activation functions still benefit from additional recurrent iterations
as demonstrated by consistent improvements in both supervised and unsupervised tasks on the CIFAR-10
dataset . Specifically, with an unsupervised {5 reconstruction loss function, Fig. |4shows that the conditional
dependence between features provided by additional iterations allows for better sparsity control, resulting in
higher network capacity through denser activations and lower reconstruction error. This suggests that recurrent
feedback allows ADNNs to learn richer representation spaces by explicitly penalizing activation sparsity. With
a supervised classification loss function, backpropagating through inference allows biases to be used for adaptive
regularization, providing more freedom in modulating activation sparsity to increase model capacity by ensuring
the uniqueness of representations across semantic categories. This results in improved classification performance
as shown in Fig. 5] especially for wider models with more components per layer.

While these experiments emphasize the importance of sparsity in deep networks and justify our DeepCA
model formulation, the effectiveness of feed-forward soft thresholding as an approximation of explicit ¢; regu-
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Figure 6: Quantitative results demonstrating the improved generalization performance of ADNN inference. The
training (a) and testing (b) reconstruction errors throughout optimization show that more iterations (7" > 1)
substantially reduce convergence time and give much lower error on held-out test data. With a sufficiently large
number of iterations, even lower-capacity models with encoders consisting of fewer residual blocks all achieve
nearly the same level of performance with small discrepancies between training (c) and testing (d) errors.

larization limits the amount of additional capacity that can be achieved with more iterations. As such, ADNNs
provide much greater performance gains when prior knowledge is available in the form of constraints that
cannot be effectively approximated by feed-forward nonlinearities. This is exemplified by our application of
output-constrained single-image depth prediction where simple feed-forward correction of the known depth val-
ues results in inconsistent discontinuities. We demonstrate this with the NYU-Depth V2 dataset , from
which we sample 60k training images and 500 testing images from held-out scenes. To facilitate faster training,
we resize the images to 28 x 28 and then randomly sample 10% of the ground truth depth values to simulate
known measurements. Following , our model architecture uses a ResNet encoder for feature extraction of
the image concatenated with the known depth values as an additional input channel. This is followed by an
ADNN decoder composed of three transposed convolution upsampling layers with biased ReLLU nonlinearites
in the first two layers and a constraint correction proximal operator in the last layer. Fig. [6] shows the mean
absolute prediction errors of this model with increasing numbers of iterations and different encoder sizes. While
all models have similar prediction error on training data, ADNNs with more iterations achieve significantly
improved generalization performance, reducing the test error of the feed-forward baseline by over 72% from
0.054 to 0.015 with 20 iterations even with low-capacity encoders. Qualitative visualizations in Fig. [7] show that
these improvements result from consistent constraint satisfaction that serves to resolve depth ambiguities.

6 Conclusion

DeepCA is a novel deep model formulation that extends shallow component analysis techniques to increase
representational capacity. Unlike feed-forward networks, intermediate network activations are interpreted as
latent reconstruction coefficients to be inferred using an iterative constrained optimization algorithm. This
is implemented using recurrent ADNNs, which allow the model parameters to be learned with arbitrary loss
functions. In addition, they provide a tool for consistently integrating prior knowledge in the form of constraints
or regularization penalties. Due to its close relationship to feed-forward networks, which are equivalent to
one iteration of this algorithm with proximal operators replacing nonlinear activation functions, DeepCA also
provides a novel theoretical perspective from which to interpret deep networks. This suggests the use of sparse
approximation theory as tool for analyzing and designing network architectures that optimize the capacity for
learning unique representations of data.
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Figure 7: Qualitative depth prediction results given a single image (a) and a sparse set of known depth values
as input. Outputs of the baseline feed-forward model (b) are inconsistent with the constraints as evidenced by
unrealistic discontinuities. An ADNN with T' = 20 iterations (c) learns to enforce the constraints, resolving
ambiguities for more detailed predictions that better agree with ground truth depth maps (d). Depending on
the difficulty, additional iterations may have little effect on the output (xvii) or be insufficient to consistently
integrate the known constraint values (xviii).
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