
Weakly- and Semi-Supervised Panoptic Segmentation

Qizhu Li?, Anurag Arnab?, and Philip H.S. Torr

University of Oxford
{liqizhu, aarnab, phst}@robots.ox.ac.uk

Abstract. We present a weakly supervised model that jointly performs both
semantic- and instance-segmentation – a particularly relevant problem given the
substantial cost of obtaining pixel-perfect annotation for these tasks. In con-
trast to many popular instance segmentation approaches based on object detec-
tors, our method does not predict any overlapping instances. Moreover, we are
able to segment both “thing” and “stuff” classes, and thus explain all the pix-
els in the image. “Thing” classes are weakly-supervised with bounding boxes,
and “stuff” with image-level tags. We obtain state-of-the-art results on Pascal
VOC, for both full and weak supervision (which achieves about 95% of fully-
supervised performance). Furthermore, we present the first weakly-supervised
results on Cityscapes for both semantic- and instance-segmentation. Finally, we
use our weakly supervised framework to analyse the relationship between anno-
tation quality and predictive performance, which is of interest to dataset creators.

Keywords: weak supervision, instance segmentation, semantic segmentation,
scene understanding

1 Introduction

Convolutional Neural Networks (CNNs) excel at a wide array of image recognition
tasks [1–3]. However, their ability to learn effective representations of images requires
large amounts of labelled training data [4, 5]. Annotating training data is a particu-
lar bottleneck in the case of segmentation, where labelling each pixel in the image by
hand is particularly time-consuming. This is illustrated by the Cityscapes dataset where
finely annotating a single image took “more than 1.5h on average” [6]. In this paper, we
address the problems of semantic- and instance-segmentation using only weak annota-
tions in the form of bounding boxes and image-level tags. Bounding boxes take only 7
seconds to draw using the labelling method of [7], and image-level tags an average of 1
second per class [8]. Using only these weak annotations would correspond to a reduc-
tion factor of 30 in labelling a Cityscapes image which emphasises the importance of
cost-effective, weak annotation strategies.

Our work differs from prior art on weakly-supervised segmentation [9–13] in two
primary ways: Firstly, our model jointly produces semantic- and instance-segmentations
of the image, whereas the aforementioned works only output instance-agnostic seman-
tic segmentations. Secondly, we consider the segmentation of both “thing” and “stuff”
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Fig. 1. We propose a method to train an instance segmentation network from weak annotations
in the form of bounding-boxes and image-level tags. Our network can explain both “thing” and
“stuff” classes in the image, and does not produce overlapping instances as common detector-
based approaches [23–25].

classes [14, 15], in contrast to most existing work in both semantic- and instance-
segmentation which only consider “things”.

We define the problem of instance segmentation as labelling every pixel in an image
with both its object class and an instance identifier [16–18]. It is thus an extension of
semantic segmentation, which only assigns each pixel an object class label. “Thing”
classes (such as “person” and “car”) are countable and are also studied extensively in
object detection [19,20]. This is because their finite extent makes it possible to annotate
tight, well-defined bounding boxes around them. “Stuff” classes (such as “sky” and
“vegetation”), on the other hand, are amorphous regions of homogeneous or repetitive
textures [14]. As these classes have ambiguous boundaries and no well-defined shape
they are not appropriate to annotate with bounding boxes [21]. Since “stuff” classes are
not countable, we assume that all pixels of a stuff category belong to the same, single
instance. Recently, this task of jointly segmenting “things” and “stuff” at an instance-
level has also been named “Panoptic Segmentation” by [22].

Note that many popular instance segmentation algorithms which are based on object
detection architectures [23–27] are not suitable for this task, as also noted by [22]. These
methods output a ranked list of proposed instances, where the different proposals are
allowed to overlap each other as each proposal is processed independently of the other.
Consequently, these architectures are not suitable where each pixel in the image has to
be explained, and assigned a unique label of either a “thing” or “stuff” class as shown in
Fig. 1. This is in contrast to other instance segmentation methods such as [16, 28–31].

In this work, we use weak bounding box annotations for “thing” classes, and image-
level tags for “stuff” classes. Whilst there are many previous works on semantic seg-
mentation from image-level labels, the best performing ones [10,32–34] used a saliency
prior. The salient parts of an image are “thing” classes in popular saliency datasets
[35–37] and this prior therefore does not help at all in segmenting “stuff” as in our
case. We also consider the “semi-supervised” case where we have a mixture of weak-
and fully-labelled annotations.

To our knowledge, this is the first work which performs weakly-supervised, non-
overlapping instance segmentation, allowing our model to explain all “thing” and “stuff”
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pixels in the image (Fig. 1). Furthermore, our model jointly produces semantic- and
instance-segmentations of the image, which to our knowledge is the first time such
a model has been trained in a weakly-supervised manner. Moreover, to our knowl-
edge, this is the first work to perform either weakly supervised semantic- or instance-
segmentation on the Cityscapes dataset. On Pascal VOC, our method achieves about
95% of fully-supervised accuracy on both semantic- and instance-segmentation. Fur-
thermore, we surpass the state-of-the-art on fully-supervised instance segmentation as
well. Finally, we use our weakly- and semi-supervised framework to examine how
model performance varies with the number of examples in the training set and the an-
notation quality of each example, with the aim of helping dataset creators better under-
stand the trade-offs they face in this context.

2 Related Work

Instance segmentation is a popular area of scene understanding research. Most top-
performing algorithms modify object detection networks to output a ranked list of seg-
ments instead of boxes [23–27,38]. However, all of these methods process each instance
independently and thus overlapping instances are produced – one pixel can be assigned
to multiple instances simultaneously. Additionally, object detection based architectures
are not suitable for labelling “stuff” classes which cannot be described well by bound-
ing boxes [21]. These limitations, common to all of these methods, have also recently
been raised by Kirillov et al. [22]. We observe, however, that there are other instance
segmentation approaches based on initial semantic segmentation networks [16, 28–30]
which do not produce overlapping instances and can naturally handle “stuff” classes.
Our proposed approach extends methods of this type to work with weaker supervision.

Although prior work on weakly-supervised instance segmentation is limited, there
are many previous papers on weak semantic segmentation, which is also relevant to our
task. Early work in weakly-supervised semantic segmentation considered cases where
images were only partially labelled using methods based on Conditional Random Fields
(CRFs) [39, 40]. Subsequently, many approaches have achieved high accuracy using
only image-level labels [9, 10, 41, 42], bounding boxes [11, 12, 43], scribbles [21] and
points [13]. A popular paradigm for these works is “self-training” [44]: a model is
trained in a fully-supervised manner by generating the necessary ground truth with the
model itself in an iterative, Expectation-Maximisation (EM)-like procedure [11, 12, 21,
42]. Such approaches are sensitive to the initial, approximate ground truth which is used
to bootstrap training of the model. To this end, Khoreva et al. [43] showed how, given
bounding box annotations, carefully chosen unsupervised foreground-background and
segmentation-proposal algorithms could be used to generate high-quality approximate
ground truth such that iterative updates to it were not required thereafter.

Our work builds on the “self-training” approach to perform instance segmentation.
To our knowledge, only Khoreva et al. [43] have published results on weakly-supervised
instance segmentation. However, the model used by [43] was not competitive with the
existing instance segmentation literature in a fully-supervised setting. Moreover, [43]
only considered bounding-box supervision, whilst we consider image-level labels as
well. Recent work by [45] modifies Mask-RCNN [23] to train it using fully-labelled



4 Li?, Arnab?, and Torr

examples of some classes, and only bounding box annotations of others. Our proposed
method can also be used in a semi-supervised scenario (with a mixture of fully- and
weakly-labelled training examples), but unlike [45], our approach works with only weak
supervision as well. Furthermore, in contrast to [43] and [45], our method does not
produce overlapping instances, handles “stuff” classes and can thus explain every pixel
in an image as shown in Fig. 1.

3 Proposed Approach

We first describe how we generate approximate ground truth data to train semantic- and
instance-segmentation models with in Sec. 3.1 through 3.4. Thereafter, in Sec. 3.5, we
discuss the network architecture that we use. To demonstrate our method and ensure the
reproducibility of our results, we release our approximate ground truth and the code to
generate it1.

3.1 Training with weaker supervision

In a fully-supervised setting, semantic segmentation models are typically trained by
performing multinomial logistic regression independently for each pixel in the image.
The loss function, the cross entropy between the ground-truth distribution and the pre-
diction, can be written as

L = −
∑
i∈Ω

log p(li|I) (1)

where li is the ground-truth label at pixel i, p(li|I) is the probability (obtained from a
softmax activation) predicted by the neural network for the correct label at pixel i of
image I and Ω is the set of pixels in the image.

In the weakly-supervised scenarios considered in this paper, we do not have reliable
annotations for all pixels in Ω. Following recent work [9, 13, 42, 43], we use our weak
supervision and image priors to approximate the ground-truth for a subset Ω′ ⊂ Ω of
the pixels in the image. We then train our network using the estimated labels of this
smaller subset of pixels. Section 3.2 describes how we estimate Ω′ and the correspond-
ing labels for images with only bounding-box annotations, and Sec. 3.3 for image-level
tags.

Our approach to approximating the ground truth is based on the principle of only
assigning labels to pixels which we are confident about, and marking the remaining
set of pixels, Ω \ Ω′, as “ignore” regions over which the loss is not computed. This is
motivated by Bansal et al. [46] who observed that sampling only 4% of the pixels in the
image for computing the loss during fully-supervised training yielded about the same
results as sampling all pixels, as traditionally done. This supported their hypothesis that
most of the training data for a pixel-level task is statistically correlated within an image,
and that randomly sampling a much smaller set of pixels is sufficient. Moreover, [47]
and [48] showed improved results by respectively sampling only 6% and 12% of the
hardest pixels, instead of all of them, in fully-supervised training.

1
https://github.com/qizhuli/Weakly-Supervised-Panoptic-Segmentation
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(a) Input image (b) Semantic segmentation
approximate ground truth

(c) Instance segmentation
approximate ground truth

Fig. 2. An example of generating approximate ground truth from bounding box annotations for
an image (a). A pixel is labelled the with the bounding-box label if it belongs to the foreground
masks of both GrabCut [49] and MCG [50] (b). Approximate instance segmentation ground truth
is generated using the fact that each bounding box corresponds to an instance (c). Grey regions
are “ignore” labels over which the loss is not computed due to ambiguities in label assignment.

3.2 Approximate ground truth from bounding box annotations

We use GrabCut [49] (a classic foreground segmentation technique given a bounding-
box prior) and MCG [50] (a segment-proposal algorithm) to obtain a foreground mask
from a bounding-box annotation, following [43]. To achieve high precision in this ap-
proximate labelling, a pixel is only assigned to the object class represented by the
bounding box if both GrabCut and MCG agree (Fig. 2).

Note that the final stage of MCG uses a random forest trained with pixel-level su-
pervision on Pascal VOC to rank all the proposed segments. We do not perform this
ranking step, and obtain a foreground mask from MCG by selecting the proposal that
has the highest Intersection over Union (IoU) with the bounding box annotation.

This approach is used to obtain labels for both semantic- and instance-segmentation
as shown in Fig. 2. As each bounding box corresponds to an instance, the foreground
for each box is the annotation for that instance. If the foreground of two bounding boxes
of the same class overlap, the region is marked as “ignore” as we do not have enough
information to attribute it to either instance.

3.3 Approximate ground-truth from image-level annotations

When only image-level tags are available, we leverage the fact that CNNs trained for im-
age classification still have localisation information present in their convolutional lay-
ers [51]. Consequently, when presented with a dataset of only images and their tags, we
first train a network to perform multi-label classification. Thereafter, we extract weak
localisation cues for all the object classes that are present in the image (according to the
image-level tags). These localisation heatmaps (as shown in Fig. 3) are thresholded to
obtain the approximate ground-truth for a particular class. It is possible for localisation
heatmaps for different classes to overlap. In this case, thresholded heatmaps occupy-
ing a smaller area are given precedence. We found this rule, like [9], to be effective in
preventing small or thin objects from being missed.
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Input image Localisation heatmaps for road,
building, vegetation and sky

Approximate ground truth generated
from image tags

Fig. 3. Approximate ground truth generated from image-level tags using weak localisation cues
from a multi-label classification network. Cluttered scenes from Cityscapes with full “stuff” an-
notations makes weak localisation more challenging than Pascal VOC and ImageNet that only
have “things” labels. Black regions are labelled “ignore”. Colours follow Cityscapes convention.

Input Image Iteration 0 Iteration 2 Iteration 5 Ground truth

Fig. 4. By using the output of the trained network, the initial approximate ground truth produced
according to Sec. 3.2 and 3.3 (Iteration 0) can be improved. Black regions are “ignore” labels
over which the loss is not computed in training. Note for instance segmentation, permutations of
instance labels of the same class are equivalent.

Though this approach is independent of the weak localisation method used, we used
Grad-CAM [52]. Grad-CAM is agnostic to the network architecture unlike CAM [51]
and also achieves better performance than Excitation BP [53] on the ImageNet locali-
sation task [4].

We cannot differentiate different instances of the same class from only image tags as
the number of instances is unknown. This form of weak supervision is thus appropriate
for “stuff” classes which cannot have multiple instances. Note that saliency priors, used
by many works such as [10, 32, 33] on Pascal VOC, are not suitable for “stuff” classes
as popular saliency datasets [35–37] only consider “things” to be salient.

3.4 Iterative ground truth approximation

The ground truth approximated in Sec. 3.2 and 3.3 can be used to train a network from
random initialisation. However, the ground truth can subsequently be iteratively refined
by using the outputs of the network on the training set as the new approximate ground
truth as shown in Fig 4. The network’s output is also post-processed with DenseCRF
[54] using the parameters of Deeplab [55] (as also done by [9, 43]) to improve the
predictions at boundaries. Moreover, any pixel labelled a “thing” class that is outside
the bounding-box of the “thing” class is set to “ignore” as we are certain that a pixel for a
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Detector

Semantic 

Subnetwork

Instance 

Subnetwork

Fig. 5. Overview of the network architecture. An initial semantic segmentation is partitioned into
an instance segmentation, using the output of an object detector as a cue. Dashed lines indicate
paths which are not backpropagated through during training.

thing class cannot be outside its bounding box. For a dataset such as Pascal VOC, we can
set these pixels to be “background” rather than “ignore”. This is because “background”
is the only “stuff” class in the dataset.

3.5 Network Architecture

Using the approximate ground truth generation method described in this section, we
can train a variety of segmentation models. Moreover, we can trivially combine this
with full human-annotations to operate in a semi-supervised setting. We use the archi-
tecture of Arnab et al. [16] as it produces both semantic- and instance-segmentations,
and can be trained end-to-end, given object detections. This network consists of a se-
mantic segmentation subnetwork, followed by an instance subnetwork which partitions
the initial semantic segmentation into an instance segmentation with the aid of object
detections, as shown in Fig. 5.

We denote the output of the first module, which can be any semantic segmentation
network, as Q where Qi(l) is the probability of pixel i of being assigned semantic label
l. The instance subnetwork has two inputs – Q and a set of object detections for the
image. There are D detections, each of the form (ld, sd, Bd) where ld is the detected
class label, sd ∈ [0, 1] the score and Bd the set of pixels lying within the bounding
box of the dth detection. This model assumes that each object detection represents a
possible instance, and it assigns every pixel in the initial semantic segmentation an
instance label using a Conditional Random Field (CRF). This is done by defining a
multinomial random variable, Xi, at each of the N pixels in the image, with X =
[X1, X2 . . . , XN ]>. This variable takes on a label from the set {1, . . . , D} where D is
the number of detections. This formulation ensures that each pixel can only be assigned
one label. The energy of the assignment x to all instance variables X is then defined as

E(X = x) = −
N∑
i

ln (w1ψBox(xi) + w2ψGlobal(xi) + ε) +

N∑
i<j

ψPairwise(xi, xj).

(2)
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The first unary term, the box term, encourages a pixel to be assigned to the instance
represented by a detection if it falls within its bounding box,

ψBox(Xi = k) =

{
skQi(lk) if i ∈ Bk
0 otherwise.

(3)

Note that this term is robust to false-positive detections [16] since it is low if the seman-
tic segmentation at pixel i, Qi(lk) does not agree with the detected label, lk. The global
term,

ψGlobal(Xi = k) = Qi(lk), (4)

is independent of bounding boxes and can thus overcome errors in mislocalised bound-
ing boxes not covering the whole instance. Finally, the pairwise term is the common
densely-connected Gaussian and bilateral filter [54] encouraging appearance and spa-
tial consistency.

In contrast to [16], we also consider stuff classes (which object detectors are not
trained for), by simply adding “dummy” detections covering the whole image with a
score of 1 for all stuff classes in the dataset. This allows our network to jointly seg-
ment all “things” and “stuff” classes at an instance level. As mentioned before, the box
and global unary terms are not affected by false-positive detections arising from de-
tections for classes that do not correspond to the initial semantic segmentation Q. The
Maximum-a-Posteriori (MAP) estimate of the CRF is the final labelling, and this is ob-
tained by using mean-field inference, which is formulated as a differentiable, recurrent
network [56, 57].

We first train the semantic segmentation subnetwork using a standard cross-entropy
loss with the approximate ground truth described in Sec 3.2 and 3.3. Thereafter, we
append the instance subnetwork and finetune the entire network end-to-end. For the in-
stance subnetwork, the loss function must take into account that different permutations
of the same instance labelling are equivalent. As a result, the ground truth is “matched”
to the prediction before the cross-entropy loss is computed as described in [16].

4 Experimental Evaluation

4.1 Experimental Set-up

Datasets and weak supervision We evaluate on two standard segmentation datasets,
Pascal VOC [19] and Cityscapes [6]. Our weakly- and fully-supervised experiments
are trained with the same images, but in the former case, pixel-level ground truth is
approximated as described in Sec. 3.1 through 3.4.

Pascal VOC has 20 “thing” classes annotated, for which we use bounding box su-
pervision. There is a single “background” class for all other object classes. Following
common practice on this dataset, we utilise additional images from the SBD dataset [58]
to obtain a training set of 10582 images. In some of our experiments, we also use 54000
images from Microsoft COCO [20] only for the initial pretraining of the semantic sub-
network. We evaluate on the validation set, of 1449 images, as the evaluation server is
not available for instance segmentation.
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Cityscapes has 8 “thing” classes, for which we use bounding box annotations, and
11 “stuff” class labels for which we use image-level tags. We train our initial semantic
segmentation model with the images for which 19998 coarse and 2975 fine annotations
are available. Thereafter, we train our instance segmentation network using the 2975
images with fine annotations available as these have instance ground truth labelled.
Details of the multi-label classification network we trained in order to obtain weak
localisation cues from image-level tags (Sec. 3.3) are described in the supplementary.
When using Grad-CAM, the original authors originally used a threshold of 15% of
the maximum value for weak localisation on ImageNet. However, we increased the
threshold to 50% to obtain higher precision on this more cluttered dataset.

Network training Our underlying segmentation network is a reimplementation of PSP-
Net [59]. For fair comparison to our weakly-supervised model, we train a fully-supervised
model ourselves, using the same training hyperparameters (detailed in the supplemen-
tary) instead of using the authors’ public, fully-supervised model. The original PSP-
Net implementation [59] used a large batch size synchronised over 16 GPUs, as larger
batch sizes give better estimates of batch statistics used for batch normalisation [59,60].
In contrast, our experiments are performed on a single GPU with a batch size of one
521 × 521 image crop. As a small batch size gives noisy estimates of batch statistics,
our batch statistics are “frozen” to the values from the ImageNet-pretrained model as
common practice [61, 62]. Our instance subnetwork requires object detections, and we
train Faster-RCNN [3] for this task. All our networks use a ResNet-101 [1] backbone.

Evaluation Metrics We use theAP r metric [38], commonly used in evaluating instance
segmentation. It extends the AP , a ranking metric used in object detection [19], to
segmentation where a predicted instance is considered correct if its Intersection over
Union (IoU) with the ground truth instance is more than a certain threshold. We also
report the AP rvol which is the mean AP r across a range of IoU thresholds. Following
the literature, we use a range of 0.1 to 0.9 in increments of 0.1 on VOC, and 0.5 to 0.95
in increments of 0.05 on Cityscapes.

However, as noted by several authors [16, 22, 28, 63], the AP r is a ranking metric
that does not penalise methods which predict more instances than there actually are in
the image as long as they are ranked correctly. Moreover, as it considers each instance
independently, it does not penalise overlapping instances. As a result, we also report the
Panoptic Quality (PQ) recently proposed by [22],

PQ =

∑
(p,g)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
Segmentation Quality (SQ)

× |TP |
|TP |+ 1

2
|FP |+ 1

2
|FN |︸ ︷︷ ︸

Detection Quality (DQ)

, (5)

where p and g are the predicted and ground truth segments, and TP , FP and FN
respectively denote the set of true positives, false positives and false negatives.

4.2 Results on Pascal VOC

Tables 1 and 2 show the state-of-art results of our method for semantic- and instance-
segmentation respectively. For both semantic- and instance-segmentation, our weakly
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Table 1. Comparison of semantic segmentation performance to recent methods using only weak,
bounding-box supervision on Pascal VOC. Note that [12] and [11] use the less accurate VGG
network, whilst we and [43] use ResNet-101. “FS%” denotes the percentage of fully-supervised
performance.

Method
Validation set Test set

IoU (weak) IoU (full) FS% IoU (weak) IoU (full) FS%

Without COCO annotations
BoxSup [12] 62.0 63.8 97.2 64.6 – –
Deeplab WSSL [11] 60.6 67.6 89.6 62.2 70.3 88.5
SDI [43] 69.4 74.5 93.2 – – –
Ours 74.3 77.3 96.1 75.5 78.6 96.3

With COCO annotations
SDI [43] 74.2 77.7 95.5 – – –
Ours 75.7 79.0 95.8 76.7 79.4 96.6

supervised model obtains about 95% of the performance of its fully-supervised counter-
part, emphasising that accurate models can be learned from only bounding box annota-
tions, which are significantly quicker and cheaper to obtain than pixelwise annotations.
Table 2 also shows that our weakly-supervised model outperforms some recent fully
supervised instance segmentation methods such as [17] and [65]. Moreover, our fully-
supervised instance segmentation model outperforms all previous work on this dataset.
The main difference of our model to [16] is that our network is based on the PSPNet
architecture using ResNet-101, whilst [16] used the network of [66] based on VGG [2].

We can obtain semantic segmentations from the output of our semantic subnetwork,
or from the final instance segmentation (as we produce non-overlapping instances) by
taking the union of all instances which have the same semantic label. We find that the
IoU obtained from the final instance segmentation, and the initial pretrained semantic
subnetwork to be very similar, and report the latter in Tab.1. Further qualitative and
quantitative results, including success and failure cases, are included in the supplement.

End-to-end training of instance subnetwork Our instance subnetwork can be trained
in a piecewise fashion, or the entire network including the semantic subnetwork can
be trained end-to-end. End-to-end training was shown to obtain higher performance
by [16] for full supervision. We also observe this effect for weak supervision from
bounding box annotations. A weakly supervised model, trained with COCO annota-
tions improves from an AP rvol of 53.3 to 55.5. When not using COCO for training the
initial semantic subnetwork, a slightly higher increase by 3.9 from 51.7 is observed.
This emphasises that our training strategy (Sec. 3.1) is effective for both semantic- and
instance-segmentation.

Iterative training The approximate ground truth used to train our model can also be
generated in an iterative manner, as discussed in Sec. 3.4. However, as the results from
a single iteration (Tab. 1 and 2) are already very close to fully-supervised performance,
this offers negligible benefit. Iterative training is, however, crucial for obtaining good
results on Cityscapes as discussed in Sec. 4.3.
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Table 2. Comparison of instance segmentation performance to recent (fully- and weakly-
supervised) methods on the VOC 2012 validation set.

Method
AP r

AP r
vol PQ

0.5 0.6 0.7 0.8 0.9

Weakly supervised without COCO
SDI [43] 44.8 – – – – – –
Ours 60.5 55.2 47.8 37.6 21.6 55.6 59.0

Fully supervised without COCO
SDS [38] 43.8 34.5 21.3 8.7 0.9 – –
Chen et al. [64] 46.3 38.2 27.0 13.5 2.6 – –
PFN [65] 58.7 51.3 42.5 31.2 15.7 52.3 –
Ours (fully supervised) 63.6 59.5 53.8 44.7 30.2 59.2 62.7
Weakly supervised with COCO
SDI [43] 46.4 – – – – – –
Ours 60.9 55.9 48.0 37.2 21.7 55.5 59.5

Fully supervised with COCO
Arnab et al. [17] 58.3 52.4 45.4 34.9 20.1 53.1 –
MPA [27] 62.1 56.6 47.4 36.1 18.5 56.5 –
Arnab et al. [16] 61.7 55.5 48.6 39.5 25.1 57.5 –
SGN [31] 61.4 55.9 49.9 42.1 26.9 – –
Ours (fully supervised) 63.9 59.3 54.3 45.4 30.2 59.5 63.1

Semi-Supervision We also consider the case where we have a combination of weak
and full annotations. As shown in Tab. 3, we consider all combinations of weak- and
full-supervision of the training data from Pascal VOC and COCO. Table 3 shows that
training with fully-supervised data from COCO and weakly-supervised data from VOC
performs about the same as weak supervision from both datasets for both semantic-
and instance-segmentation. Furthermore, training with fully annotated VOC data and
weakly labelled COCO data obtains similar results to full supervision from both datasets.
We have qualitatively observed that the annotations in Pascal VOC are of higher quality
than those of Microsoft COCO (random samples from both datasets are shown in the
supplementary). And this intuition is evident in the fact that there is not much differ-
ence between training with weak or full annotations from COCO. This suggests that
in the case of segmentation, per-pixel labelling of additional images is not particularly
useful if they are not labelled to a high standard, and that labelling fewer images at a
higher quality (Pascal VOC) is more beneficial than labelling many images at a lower
quality (COCO). This is because Tab. 3 demonstrates how both semantic- and instance-
segmentation networks can be trained to achieve similar performance by using only
bounding box labels instead of low-quality segmentation masks. The average annota-
tion time can be considered a proxy for segmentation quality. While a COCO instance
took an average of 79 seconds to segment [20], this figure is not mentioned for Pascal
VOC [19, 67].
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Table 3. Semantic- and instance-segmentation
performance on Pascal VOC with varying lev-
els of supervision from the Pascal and COCO
datasets. The former is measured by the IoU,
and latter by the AP r

vol and PQ.

Dataset
IoU AP r

vol PQ
VOC COCO

Weak Weak 75.7 55.5 59.5
Weak Full 75.8 56.1 59.8
Full Weak 77.5 58.9 62.7
Full Full 79.0 59.5 63.1

Table 4. Semantic segmentation performance
on the Cityscapes validation set. We use
more informative, bounding-box annotations
for “thing” classes, and this is evident from the
higher IoU than on “stuff” classes for which
we only have image-level tags.

Method IoU
(weak)

IoU
(full)

FS%

Ours (thing classes) 68.2 70.4 96.9
Ours (stuff classes) 60.2 72.4 83.1
Ours (overall) 63.6 71.6 88.8

4.3 Results on Cityscapes

Tables 4 and 5 present, what to our knowledge is, the first weakly supervised results
for either semantic or instance segmentation on Cityscapes. Table 4 shows that, as ex-
pected for semantic segmentation, our weakly supervised model performs better, rela-
tive to the fully-supervised model, for “thing” classes compared to “stuff” classes. This
is because we have more informative bounding box labels for “things”, compared to
only image-level tags for “stuff”. For semantic segmentation, we obtain about 97% of
fully-supervised performance for “things” (similar to our results on Pascal VOC) and
83% for “stuff”. Note that we evaluate images at a single-scale, and higher absolute
scores could be obtained by multi-scale ensembling [59, 61].

For instance-level segmentation, the fully-supervised ratios for the PQ are similar
to the IoU ratio for semantic segmentation. In Tab. 5, we report the AP rvol and PQ
for both thing and stuff classes, assuming that there is only one instance of a “stuff”
class in the image if it is present. Here, the AP rvol for “stuff” classes is higher than that
for “things”. This is because there can only be one instance of a “stuff” class, which
makes instances easier to detect, particularly for classes such as “road” which typically
occupy a large portion of the image. The Cityscapes evaluation server, and previous
work on this dataset, only report the AP rvol for “thing” classes. As a result, we report
results for “stuff” classes only on the validation set. Table 5 also compares our results
to existing work which produces non-overlapping instances on this dataset, and shows
that both our fully- and weakly-supervised models are competitive with recently pub-
lished work on this dataset. We also include the results of our fully-supervised model,
initialised from the public PSPNet model [59] released by the authors, and show that
this is competitive with the state-of-art [31] among methods producing non-overlapping
segmentations (note that [31] also uses the same PSPNet model). Figure 7 shows some
predictions of our weakly supervised model; further results are in the supplementary.

Iterative training Iteratively refining our approximate ground truth during training, as
described in Sec. 3.4, greatly improves our performance on both semantic- and instance-
segmentation as shown in Fig. 6. We trained the network for 150 000 iterations before
regenerating the approximate ground truth using the network’s own output on the train-
ing set. Unlike on Pascal VOC, iterative training is necessary to obtain good perfor-
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Table 5. Instance-level segmentation results on Cityscapes. On the validation set, we report re-
sults for both “thing” (th.) and “stuff” (st.) classes. The online server, which evaluates the test
set, only computes the AP r for “thing” classes. We compare to other fully-supervised methods
which produce non-overlapping instances. To our knowledge, no published work has evaluated
on both “thing” and “stuff” classes. Our fully supervised model, initialised from the public PSP-
Net model [59] is equivalent to our previous work [16], and competitive with the state-of-art.
Note that we cannot use the public PSPNet pretrained model in a weakly-supervised setting.

Validation Test
AP r

vol PQ IoU AP r
vol

Method th. st. all th. st. all th. st. all th.

Ours (weak, ImageNet init.) 17.0 33.1 26.3 35.8 43.9 40.5 68.2 60.2 63.6 12.8
Ours (full, ImageNet init.) 24.3 42.6 34.9 39.6 52.9 47.3 70.4 72.4 71.6 18.8

Ours (full, PSPNet init.) [16] 28.6 52.6 42.5 42.5 62.1 53.8 80.1 79.5 79.8 23.4

Pixel Encoding [68] 9.9 – – – – – – – – 8.9
RecAttend [69] – – – – – – – – – 9.5
InstanceCut [30] – – – – – – – – – 13.0
DWT [28] 21.2 – – – – – – – – 19.4
SGN [31] 29.2 – – – – – – – – 25.0

mance on Cityscapes as the approximate ground truth generated on the first iteration
is not sufficient to obtain high accuracy. This was expected for “stuff” classes, since
we began from weak localisation cues derived from the image-level tags. However, as
shown in Fig. 6, “thing” classes also improved substantially with iterative training, un-
like on Pascal VOC where there was no difference. Compared to VOC, Cityscapes is a
more cluttered dataset, and has large scale variations as the distance of an object from
the car-mounted camera changes. These dataset differences may explain why the im-
age priors employed by the methods we used (GrabCut [49] and MCG [50]) to obtain
approximate ground truth annotations from bounding boxes are less effective. Further-
more, in contrast to Pascal VOC, Cityscapes has frequent co-occurences of the same
objects in many different images, making it more challenging for weakly supervised
methods.

Effect of ranking methods on the AP r The AP r metric is a ranking metric derived
from object detection. It thus requires predicted instances to be scored such that they
are ranked in the correct relative order. As our network uses object detections as an
additional input and each detection represents a possible instance, we set the score of a
predicted instance to be equal to the object detection score. For the case of stuff classes,
which object detectors are not trained for, we use a constant detection score of 1 as
described in Sec. 3.5. An alternative to using a constant score for “stuff” classes is to
take the mean of the softmax-probability of all pixels within the segmentation mask.
Table 6 shows that this latter method improves the AP r for stuff classes. For “things”,
ranking with the detection score performs better and comes closer to oracle performance
which is the maximum AP r that could be obtained with the predicted instances.

Changing the score of a segmented instance does not change the quality of the actual
segmentation, but does impact theAP r greatly as shown in Tab. 6. The PQ, which does
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Fig. 6. Iteratively refining our approximate ground truth during training improves both semantic
and instance segmentation on the Cityscapes validation set.

Table 6. The effect of different instance rank-
ing methods on the AP r

vol of our weakly su-
pervised model computed on the Cityscapes
validation set.

Ranking Method AP r
vol th. AP r

vol st. PQ all

Detection score 17.0 26.7 40.5
Mean seg. confi-
dence

14.6 33.1 40.5

Oracle 21.6 37.0 40.5 Fig. 7. Example results on Cityscapes of our
weakly supervised model.

not use scores, is unaffected by different ranking methods, and this suggests that it is a
better metric for evaluating non-overlapping instance segmentation where each pixel in
the image is explained.

5 Conclusion and Future Work

We have presented, to our knowledge, the first weakly-supervised method that jointly
produces non-overlapping instance and semantic segmentation for both “thing” and
“stuff” classes. Using only bounding boxes, we are able to achieve 95% of state-of-
art fully-supervised performance on Pascal VOC. On Cityscapes, we use image-level
annotations for “stuff” classes and obtain 88.8% of fully-supervised performance for
semantic segmentation and 85.6% for instance segmentation (measured with the PQ).
Crucially, the weak annotations we use incur only about 3% of the time of full la-
belling. As annotating pixel-level segmentation is time consuming, there is a dilemma
between labelling few images with high quality or many images with low quality. Our
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semi-supervised experiment suggests that the latter is not an effective use of annotation
budgets as similar performance can be obtained from only bounding-box annotations.

Future work is to perform instance segmentation using only image-level tags and
the number of instances of each object present in the image as supervision. This will
require a network architecture that does not use object detections as an additional input.
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Appendix

Section A presents further qualitative and quantitative results of our experiments on
Cityscapes and Pascal VOC. Section B describes the training of the networks described
in the main paper. Section 4.2 of our paper mentioned that the annotation quality of
Pascal VOC [19] is better than COCO [20]. Some randomly drawn images from these
datasets are presented to illustrate this point in Sec. C. Finally, Sec. D shows our calcu-
lation of how much the overall annotation time is reduced by using weak annotations,
in comparison to full annotations, on the Cityscapes dataset.

A Additional Qualitative and Quantitative Results

Figure 7 and Tab. 7 present additional qualitative and quantitative results on the Cityscapes
dataset. Similarly, Fig. 8 and Tab. 8 show additional results on the Pascal VOC dataset.
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Input image Weakly-supervised model Fully-supervised model

Fig. 7. Comparison of our weakly- and fully-supervised instance segmentation models on the
Cityscapes dataset. The fully-supervised model produces more precise segmentations, as seen by
its sharper boundaries. The last row also shows how the fully-supervised model segments “stuff”
classes such as “vegetation” and “sidewalk” more accurately. Both of these were expected, as the
weakly-supervised model is trained only with bounding box and image tag annotations. Rows 3
and 6 also show some instances with different colouring. Each colour represents an instance ID,
and a discrepancy between the two indicates that a different number of instances were segmented.
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Input image Weakly-supervised model Fully-supervised model

This inserts some vspace
Fig. 7 cont. Comparison of our weakly- and fully-supervised instance segmentation models on
the Cityscapes dataset. The last three rows show how the fully-supervised model is also able to
segment “stuff” classes such as “sidewalk” more accurately. This was expected since the weakly-
supervised model is only trained with image-level tags for “stuff” classes, which provides very
little localisation information.
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Input image Weakly-supervised model Fully-supervised model

Fig. 8. Comparison of our weakly- and fully-supervised instance segmentation models on the
Pascal VOC validation set. The weakly-supervised model typically obtains results similar to
its state-of-the-art, fully-supervised counterpart. However, the fully-supervised model produces
more accurate and precise segmentations, as seen in the last two rows.
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Input image Weakly-supervised model Fully-supervised model

Fig. 8 cont. The first and second rows show examples where the results of the two models are
similar. In the third and fourth rows, the weakly-supervised model does not segment the “green
person” as well as the fully-supervised model. In the last row, both weakly- and fully-supervised
models have made an error in not completely segmenting each of the bottles.
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B Experimental Details

B.1 Network architecture and training

The underlying semantic segmentation network is a reimplementation of PSPNet [59]
as described in Sec. 3.5 of the main paper, using a ResNet-101 backbone. This network
has an output stride of 8, meaning that the result of the network has to be upsampled by
a factor of 8 to obtain the final prediction at the original resolution.

We used most of the same training hyperparameters for training both our fully- and
weakly-supervised networks. A batch size of a single 521×521 image crop, momentum
of 0.9, and a weight decay of 5× 10−4 were used in all our experiments.

We trained the semantic segmentation module first, and finetuned the entire instance
segmentation network afterwards. For training the semantic segmentation module, the
fully supervised models were trained with an initial learning rate of 1 × 10−4, which
was then reduced to 1 × 10−5 when the training loss converged. We used the same
learning rate schedule for our weakly-supervised model on Pascal VOC where we did
not do any iterative training. In total, about 400k iterations of training were performed.
When training our weakly-supervised model iteratively on Cityscapes, we used an ini-
tial learning rate of 1 × 10−4 which was then halved for each subsequent stage of
iterative training. Each of these iterative training stages were 150k iterations long. Both
of the weakly- and fully-supervised models were initialised with ImageNet-pretrained
weights and batch normalisation statistics.

In the instance training stage, we fixed the learning rate to 1×10−5 for both weakly-
and fully-supervised experiments on the VOC and Cityscapes datasets. We observed
that a total of 400k iterations were required for the models’ training losses to converge.

When training the Faster-RCNN object detector [3], we used all the default training
hyperparameters in the publicly available code.

B.2 Multi-label classification network

We obtained weak localisation cues, as described in Sec. 3.3 of the main paper, by first
training a network to perform multi-label classification on the Cityscapes dataset.

We adapted the same PSPNet [59] architecture for segmentation for the classifi-
cation task: The output of the last convolutional layer (conv5 4) is followed by a
global average pooling layer to aggregate all the spatial information. Thereafter, a fully-
connected layer with 19 outputs (the number of classes in the Cityscapes dataset) is
appended. This network was then trained with a binary cross entropy loss for each of
the 19 labels in the dataset. The loss for a single image is

L =
1

N

N∑
i=1

−yi log(sigmoid(zi))− (1− yi) log(1− sigmoid(zi)), (6)

where y is the ground truth image-level label vector and yi = 1 if the ith class is
present in the image and 0 otherwise. zi is the logit for the ith class output by the final
fully-connected layer in the network.
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It is not possible to fit an entire 2048 × 1024 Cityscapes image in memory to per-
form multi-label classification. Using the PSPNet architecture described above (with an
output stride of 8), it would take 48.8 GB of memory to train a network with a batch size
of 1. Even the standard ResNet-101 architecture [1] (which has a higher output stride
of 32, and thus sixteen times less spatial resolution) would take 21.7 GB of memory,
which is still almost double the 12GB available in our Titan X GPU. Consequently, we
took 15 fixed crops of size 500× 400 from the original 2048× 1024 image and trained
with these crops instead. We were careful not to take random crops during training,
as this could be a form of extra supervision. Instead, as we took 15 fixed crops which
tile the image and derived image-level labels from them, it effectively means that in a
real-world scenario annotators would be asked to annotate image-level labels for fifteen
500× 400 images rather than a single 2048× 1024 image.

This multi-label classification network was trained with a batch size of 1 and a fixed
learning rate of 1× 10−4 until the training loss converged. We found that this occurred
after 50k iterations of training. At this point, the mean Average Precision (mAP) on the
validation set was 78.8. The mAP is also used by the Pascal VOC dataset to benchmark
multi-label classification [19].

C Comparison of Pascal VOC and Microsoft COCO annotation
quality

Section 4.2 of the main paper mentioned that images in Pascal VOC [19] are annotated
at a higher quality than those in Microsoft COCO [20]. Figure 9 illustrates this observa-
tion. Images were randomly drawn from Microsoft COCO, and then images from Pascal
VOC with the same semantic classes present are shown alongside for comparison. The
polygons used to annotate the objects in COCO are evident, and the annotations at the
boundaries of objects are often incorrect.

D Calculation of reduction factor in annotation time if only weak
labels are used

The Cityscapes dataset has 11 “stuff” classes, and 8 “thing” classes annotated. Over the
training and validation sets, there are an average of 17.9 instances of “thing” classes per
full-resolution, 2048× 1024 image.

For the calculation in Sec. 1 of the paper, we assumed that each instance of a “thing”
class is labelled with a bounding box, and that image-level tags are annotated for all
present “stuff” classes. We assumed that a bounding box takes 7 seconds per instance
to draw [7] and that an image-level tag takes 1 second to label [8].

Therefore the average time to annotate “thing” classes with a bounding-box is
17.9 × 7 = 125.3 seconds. As we took 15 fixed crops per image (as described in
Sec. B.2) and there are an average of 3.8 “stuff” tags per crop, the average time to an-
notate stuff classes is 15× 3.8 = 57 seconds. This totals 182.3 seconds = 3.0 minutes
per image. Thus the annotation time is reduced by a factor of 29.6 (since the images
originally required 90 minutes to label at a pixel-level by hand [6]) if weak annotations
in the form of bounding boxes and image-level tags are used.
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COCO Image COCO Label Pascal VOC Image Pascal VOC Label

Fig. 9. Comparison of the annotation quality of images in the Microsoft COCO and Pascal VOC
datasets. An image was randomly drawn from COCO, and an image from Pascal VOC with
similar content is shown alongside it. The polygons used to annotate the objects in COCO are
evident, and the annotations at the boundaries of objects are often incorrect. Grey regions in the
Pascal images indicate “void” regions where the annotator was unsure of the correct label.
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COCO Image COCO Label Pascal VOC Image Pascal VOC Label

Fig. 9 cont. Comparison of the annotation quality of images in the Microsoft COCO and Pascal
VOC datasets. An image was randomly drawn from COCO, and an image from Pascal VOC with
similar content is shown alongside it. The polygons used to annotate the objects in COCO are
evident, and the annotations at the boundaries of objects are often incorrect. Grey regions in the
Pascal images indicate “void” regions where the annotator was unsure of the correct label.
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