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Abstract. This paper aims to improve privacy-preserving visual recog-
nition, an increasingly demanded feature in smart camera applications,
by formulating a unique adversarial training framework. The proposed
framework explicitly learns a degradation transform for the original
video inputs to optimize the trade-off between target task performance
and the associated privacy budgets on the degraded video. A signifi-
cant challenge is that the privacy budget, often defined and measured
in task-driven contexts, cannot be reliably indicated using any single
model performance because strong privacy protection has to sustain
against any possible model that tries to hack privacy information. Such
an uncommon situation has motivated us to propose two strategies, i.e.,
budget model restarting and ensemble, to enhance the generalization
of the learned degradation on protecting privacy against unseen hacker
models. Novel training strategies, evaluation protocols, and result visu-
alization methods have been designed accordingly. Two experiments on
privacy-preserving action recognition, with privacy budgets defined in
various ways, manifest the compelling effect of the proposed framework
in simultaneously maintaining high target task (action recognition) per-
formance while suppressing the privacy breach risk. The code is available
at https://github.com/VITA-Group/Privacy-AdversarialLearning.
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1 Introduction

Smart surveillance or smart home cameras, such as Amazon Echo and Nest Cam,
are now found in millions of locations to remotely link users to their homes or
offices, providing monitoring services to enhance security and/or notify environ-
ment changes, as well as lifelogging and intelligent services. Such a prevalence of
smart cameras has reinvigorated the privacy debate since most of them require
to upload device-captured visual data to the centralized cloud for analytics.

This paper explores how to make sure that those smart computer vision devices
are only seeing the things that we want them to see (and how to define what we
want)? Is it at all possible to alleviate privacy concerns without compromising
user convenience?
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At first glance, the question itself is posed as a dilemma: we would like a camera
system to recognize important events and assist daily human life by understanding
its videos while preventing it from obtaining sensitive visual information (such as
faces) that can intrude people’s privacy. Classical cryptographic solutions secure
communication against unauthorized access from attackers. However, they are
not immediately applicable to preventing authorized agents (such as the back-end
analytics) from the unauthorized abuse of information, causing privacy breach
concerns. The popular concept of differential privacy has been introduced to
prevent an adversary from gaining additional knowledge by inclusion/exclusion
of a subject, but not from gaining knowledge from released data itself [8]. In
other words, an adversary can still accurately infer sensitive attributes from any
sanitized sample available, which does not violate any of the (proven) properties
of differential privacy [18]. It thus becomes a new and appealing problem to find
an appropriate transform on the collected raw visual data at the local camera
end so that the transformed data itself will only enable specific target tasks
while obstructing other undesired privacy-related tasks. Recently, some new video
acquisition approaches [3,9,47] proposed to intentionally capture or process videos
in extremely low-resolution to create privacy-preserving “anonymized videos”,
and showed promising empirical results.

In contrast, we formulate the privacy-preserving visual recognition in a unique
adversarial training framework. The framework explicitly optimizes the trade-off
between target task performance and associated privacy budgets by learning
active degradations to transform the video inputs. We investigate a novel way to
model privacy budget in a task-driven context. Unlike the standard adversarial
training where two individual models compete, our framework’s privacy budget
cannot be simply defined with one single model. The ideal protection of privacy
has to be universal and model-agnostic, i.e., obstructing every possible model
from predicting privacy information. To resolve the so-called “∀ challenge”, we
propose two strategies, i.e., restarting and ensembling budget model(s), to enhance
the generalization capability of the learned degradation to defend against unseen
models. Novel training strategies and evaluation protocols have been proposed
accordingly. Two experiments on privacy-preserving action recognition, with
privacy budgets defined in different ways, manifest the proposed framework’s
effectiveness. With many problems left open and a considerable improvement
room existing, we hope this pilot study will attract more community interests.

2 Related Work

2.1 Privacy Protection in Computer Vision

With pervasive cameras for surveillance or smart home devices, privacy-preserving
visual recognition has drawn increasing interests from both industry and academia,
mainly for two reasons. First, due to the devices’ computationally demanding na-
ture, it is often impractical to run visual recognition tasks at the resource-limited
local device end. Communicating (part of) data to the cloud is indispensable. Sec-
ond, while traditional privacy concerns mostly arise from the unsecured channel
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between cloud and device (e.g., malicious third-party eavesdropping), customers
now possess increasing concerns against sharing their private visual information
to the cloud (which might turn malicious itself).

A few cryptographic solutions [13,66] were developed to encrypt visual in-
formation in a homomorphic way locally, i.e., the cryptosystems allow for basic
arithmetic classifiers over encrypted data. However, many encryption-based solu-
tions will incur high computational costs at local platforms. It is also challenging
to generalize the cryptosystems to more complicated classifiers. [4] combined the
detection of regions of interest and the real encryption techniques to improve
privacy while allowing general surveillance to continue. A seemingly reasonable
and computationally cheaper option is to extract and transmit feature descriptors
from raw images and transmit those features only. Unfortunately, a previous
study [31] revealed that considerable information of original images could still be
recovered from standard HOG or SIFT features (even they look visually distinct
from natural images), making them fragile to privacy hacking too.

An alternative toward a privacy-preserving vision system concerns the concept
of anonymized videos. Such videos are intentionally captured or processed to be
in special low-quality conditions, which only allow for recognizing some target
events or activities, while avoiding the unwanted leak of the identity information
for the human subjects in the video [3,9,47]. Typical examples of anonymized
videos are videos made to have extremely low resolution (e.g., 16× 12) by using
low-resolution camera hardware [9], based on image operations like blurring and
superpixel clustering [3], or introducing cartoon-like effects with a customized
version of mean shift filtering [63]. [41,42] proposed to use privacy-preserving
optics to filter sensitive information from the incident light-field before sensor
measurements are made, by k-anonymity and defocus blur. Earlier work [23]
explored privacy-preserving tracking and coarse pose estimation using a network
of ceiling-mounted time-of-flight low-resolution sensors. [58] adopted a network
of ceiling-mounted binary passive infrared sensors. However, both works handled
only a limited set of activities performed at specific constrained areas in the room.
Later, [47] showed that even at the extremely low resolutions, reliable action
recognition could be achieved by learning appropriate downsampling transforms,
with neither unrealistic activity-location assumptions nor extra specific hardware
resources. The authors empirically verified that conventional face recognition
easily failed on the generated low-resolution videos. The usage of low-resolution
anonymized videos [9,47] is computationally cheaper and compatible with sensor
and bandwidth constraints. However, [9,47] remain empirical in protecting privacy.
In particular, neither were their models learned towards protecting any visual
privacy nor were the privacy-preserving effects carefully analyzed and evaluated.
In other words, privacy protection in [9,47] came as a “side product” of down-
sampling, and was not a result of any optimization. The authors of [9,47] also
did not extend their efforts to studying deep learning-based recognition, making
their task performance less competitive.

Very recently, a few learning-based approaches have come into play to ensure
better privacy protection. [53] defined a utility metric and a privacy metric for a
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task entity, and then designed a data sanitization function to achieve privacy while
providing utility. However, they considered only simple sanitization functions
such as linear projection and maximum mean discrepancy transformation.

In [43], the authors proposed a game-theoretic framework between an obfus-
cator and an attacker, in order to hide visual secrets in the camera feed without
significantly affecting the functionality of the target application. This seems to
be the most relevant work to the proposed one: however, [43] only discussed a
toy task to hide QR codes while preserving the overall structure of the image.
Another relevant work [18] addressed the optimal utility-privacy tradeoff by for-
mulating it as a min-diff-max optimization problem. Nonetheless, The empirical
quantification of privacy budgets in existing works [53,43,18] only considered to
protect privacy against one hacker model, and was thus insufficient, for which we
will explain more in Section 3.1.

2.2 Privacy Protection in Social Media and Photo Sharing

User privacy protection is also a topic of extensive interests in the social media
field, especially for photo sharing. The most common means to protect user
privacy in an uploaded photo is to add empirical obfuscations, such as blurring,
mosaicing, or cropping out certain regions (usually faces) [26]. However, extensive
research showed that such an empirical means could be easily hacked too [37,32].

The latest work [38] described a game-theoretical system in which the photo
owner and the recognition model strive for antagonistic goals of dis-/enabling
recognition, and better obfuscation ways could be learned from their competition.
However, it was only designed to confuse one specific recognition model, via
finding its “adversarial perturbations” [36]. That can cause obvious overfitting as
merely changing to another recognition model will likely put the learning efforts
in vain: such perturbations even cannot protect privacy from human eyes. Their
problem setting thus deviated far away from our target problem. Another notable
difference is that we usually hope to cause minimum perceptual quality loss to
those photos after applying any privacy-preserving transform to them in social
photo sharing. The same concern does not exist in our scenario, allowing us to
explore much more free, even aggressive image distortions.

A useful resource to us was found in [39], which defined concrete privacy
attributes and correlated them to image content. The authors categorized possible
private information in images, and then run a user study to understand privacy
preferences. They then provided a sizable set of 22k images annotated with 68
privacy attributes, on which they trained privacy attribute predictors.

2.3 Recognition from Visually Degraded Data

One crucial challenge to enable the usage of anonymized videos is to ensure
reliable performance of the target tasks on those lower-quality videos, besides
suppressing the undesired privacy leak. Among all low visual quality scenarios,
visual recognition in low resolution is probably best studied. [61,28,7] showed that
low-resolution object recognition could be significantly enhanced through proper
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pre-training and domain adaption. Low-resolution action recognition has also
drawn growing interests: [46] proposed a two-stream multi-Siamese CNN that
learns the embedding space to be shared by low-resolution videos down-sampled
in different ways, on top of which a transform-robust action classifier was trained.
[6] leveraged a semi-coupled filter-sharing two-stream network to learn a mapping
between the low- and high-resolution feature space.

In comparison, the “low-quality” anonymized videos in our case are generated
by learned and more complicated degradations, other than simple downsampling
[61,6].

3 Technical Approach

3.1 Problem Definition

Assume our training data X (raw visual data captured by camera) are associated
with a target task T and a privacy budget B. We mathematically express the
goal of privacy-preserving visual recognition as below (γ is a weight coefficient):

minfT ,fd LT (fT (fd(X)), YT ) + γLB(fd(X)), (1)

where fT denotes the model to perform the target task T on its input data.
Since T is usually a supervised task, e.g., action recognition or visual tracking, a
label set YT is provided on X, and a standard cost function LT (e.g., softmax) is
defined to evaluate the task performance on T . On the other hand, we need to
define a budget cost function LB to evaluate the privacy leak risk of its input
data: the larger LB, the higher privacy leak risk. Our goal is to seek such an
active degradation function fd to transform the original X as the common input
for both LT and LB , such that:

– The target task performance LT is minimally affected compare to when using
the raw data, i.e., minfT ,fd LT (fT (fd(X)), YT ) ≈ minf ′

T
LT (f ′T (X), YT ).

– The privacy budget LB is greatly suppressed compared to raw data, i.e.,
LB(fd(X))� LB(X).

The definition of the privacy budget cost LB is not straightforward. Practically,
it needs to be placed in concrete application contexts, often in a task-driven way.
For example, in smart workplaces or smart homes with video surveillance, one
might want to avoid disclosing persons’ faces or identities. Therefore, to reduce
LB could be interpreted as to suppress the success rate of identity recognition or
verification on the transformed video fd(X). Other privacy-related attributes,
such as race, gender, or age, can be similarly defined too. We denote the privacy-
related annotations (such as identity label) as YB, and rewrite LB(fd(X)) as
LB(fb(fd(X)), YB), where fb denotes the budget model to predict the corre-
sponding privacy information. Different from LT , minimizing LB will encourage
fb(fd(X)) to diverge from YB as much as possible.

Such a supervised, task-driven definition of LB poses at least two-fold chal-
lenges: (1) the privacy budget-related annotations, denoted as YB, often have
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less availability than target task labels. Specifically, it is often challenging to
have both YT and YB ready on the same X; (2) considering the nature of privacy
protection, it is not sufficient to merely suppress the success rate of one fb model.
Instead, define a privacy prediction function family P: fd(X) → YB, the ideal
privacy protection of fd should be reflected as suppressing every possible
model fb from P . That diverts from the common supervised training goal, where
one only needs to find one model to successfully fulfill the target task. We re-write
the general form (1) with the task-driven definition of LB :

minfT ,fd LT (fT (fd(X), YT ) + γmaxfb∈P LB(fb(fd(X)), YB). (2)

For the solved fd, the two goals should be simultaneously satisfied: (1) there
exists (“∃”) at least one fT function that can predict YT from fd(X) well; (2)
for all (“∀”) fb functions ∈ P, none of them (even the best one) can reliably
predict YB from fd(X). Most existing works chose an empirical fd (e.g., simple
downsampling) and solved minfT LT (fT (fd(X), YT ) [9,61]. [47] essentially solved
minfT ,fd LT (fT (fd(X), YT ) to jointly adapted fd and fT , after which the authors
empirically verified the effect of fd on LB (defined as face recognition error rates).
Those approaches lack the explicit optimization towards privacy budgets, and
thus have no guaranteed privacy-protection effects.

Comparison to Standard Adversarial Training The most notable difference be-
tween (2) and existing works based on standard adversarial training [43,38] lies
in whether the adversarial perturbations are optimized for “fooling” one specific
fb, or all possible fbs. We believe the latter to be necessary, as it considers gener-
alization ability to suppressing unseen privacy breach. Moreover, most existing
works seek perturbations with minimal human visual impacts, e.g., by enforcing
`p norm constraint on the pixel domain. That is unaligned with our purpose. Our
model could be viewed as to minimize the perturbation in the (learned) feature
domain of the target utility task.

3.2 Basic Framework

Overview Figure 1 depicts a model architecture to implement the proposed
formulation (2). It first takes the original video data X as the input, and passes
it through the active degradation module fd to generate the anonymized video
fd(X). During training, the anonymized video simultaneously goes through a
target task model fT and a privacy prediction model fb. All three modules,
fd, fT , and fb, are learnable and can be implemented by neural networks. The
entire model is trained under the hybrid loss of LT and LB . By tuning the entire
pipeline from end to end, fd(X) will find the optimal task-specific transformation
to the advantage of the target task and the disadvantage of the privacy breach,
fulfilling the goal of privacy-preserving visual recognition. After training, we
can apply the learned active degradation at the local device (e.g., camera) to
convert incoming video to its anonymized version, which is then transmitted to
the backend (e.g., cloud) for target task analysis.
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The proposed framework leads to an adaptive and end-to-end manageable
pipeline for privacy-preserving visual recognition. Its methodology is related to
the emerging research of feature disentanglement [64]. That technique leads to
non-overlapped groups of factorized latent representations, each of which would
properly describe information corresponding to particular attributes of interest.

Raw Video

Active 
Degradation fd

fd(X) 
Target Task 

Model fT

Privacy 
Prediction 
Model fb

   LT
   LB

min (LT+ ᶕ LB)

X 

Anonymized
Video

LT LB 

fT (fd(X)) fb (fd(X))

Fig. 1: Basic adversarial training frame-
work for privacy-preserving visual recog-
nition.

Previously it was applied to gener-
ative models [10,51] and reinforcement
learning [20].

Similar to GANs [16] and other ad-
versarial models, our training is prone
to collapse and/or bad local mini-
mums. We thus propose a carefully-
designed training algorithm with a
three-module alternating update strat-
egy, explained in the supplemen-
tary, which could be interpreted as
a three-party game. In principle, we
strive to prevent any of the three mod-
ules (fd, fT , and fb) to change “too
quickly”. Thus, keep monitoring LT

and Lb to decide which of the three
modules to be updated next.

Choices of fd, fT , and fb The choices of the three modules will significantly
impact the performance. As [47] pointed out, fd can be constructed as a nonlinear
mapping by filtering. The form of fd can be flexible, and its output fd(X) is
unnecessary to be a natural image. For simplicity, we choose fd to be a “learnable
filtering” in the form of a 2-D convolutional neural network (CNN), whose output
fd(X) will be a 2-D feature map of the same resolution as the input video frame.
Such a choice only facilitates the initial concatenation of building blocks, e.g., fT
and fb often start with pre-trained models on natural images.

Besides, fd(X) should preferably be in a compact form and light to transmit,
considering it will be sent to the cloud through (limited-bandwidth) channels.

To ensure the effect of fd, sufficiently strong fT and fb models should be
chosen to compete with each other. We employ state-of-the-art video recognition
CNNs for corresponding tasks, and adapt them for the degraded input fd(X)
using the robust pre-training strategy proposed in [61].

Particular attention should be paid towards the budget cost (second term)
defined in (2), which we refer to as “the ∀ Challenge”: if we use fb with some
pre-defined CNN architecture, how could we be sure that it is the “best possible”
privacy prediction model? In other words, given a fd function that manages to fail
one fb model, is it possible that some other f ′b ∈ P would still be able to predict
YB from fd(X), thus leaking privacy? While it is computationally intractable to
search over P exhaustively, a naive empirical solution would be to chose a robust
privacy prediction model, hoping that a fd function can confuse this strong one
will be able to fool other possible functions as well. However, the resulting fd(X)
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may still overfit the artifacts of one specific fb and fails to generalize. Section 3.3
will introduce two more advanced and feasible recipes.

Choices of LT and LB Without loss of generality, we assume both target task
fT and privacy prediction fb to be classification models and output class labels.
To optimize the target task T ’s performance, LT could be simply chosen as the
KL divergence: KL(fT (fd(X), YT ).

Choosing LB is non-standard and tricky since we require minimizing the
privacy budget LB(fb(fd(X)), YB) to enlarge the divergence between fb(fd(X))
and YB . One possible choice is the negative KL divergence between the predicted
class vector and the ground truth label, but minimizing a concave function will
cause a ton of numerical instabilities (often explosions). Instead, we use the
predicted class vector’s negative entropy function and minimize it to encourage
“uncertain” predictions. Meanwhile, we will use YB to ensure a sufficiently strong
fb at the initialization (see 4.1.2). Furthermore, YB will play a critical role in
model restarting (see 3.3).

3.3 Addressing the ∀ Challenge

To improve the generalization of learned fd over all possible fb ∈ P (i.e., any
model cannot reliably predict privacy), we hereby discuss two easy-to-implement
and straightforward options.

Other more sophisticated model re-sampling or model-search approaches, e.g.,
[68], will be explored in future work.

Budget Model Restarting At certain point of training (e.g., when the
privacy budget LB(fb(fd(X))) stops decreasing any further), we replace the
current weights in fb with random weights. Such random restarting aims to avoid
trivial overfitting between fb and fd (i.e., fd is only specialized at confusing the
current fb) without incurring more parameters. We then start to train the new
model fb to be a strong competitor, w.r.t. the current fd(X): specifically, we
freeze the training of fd and fT , and change to minimizing KL(fb(fd(X)), YB),
until the new fb has been trained from scratch to become a strong privacy
prediction model over current fd(X). We then resume adversarial training by
unfreezing fd and fT , as well as replacing the loss for fb back to the negative
entropy. It can repeat several times.

Budget Model Ensemble The other strategy proposes to approximate the
continuous P with a discrete set of M sample functions. Assuming the budget
model ensemble {f ib}Mi=1, we turn to minimizing the following discretized surrogate
of (2):

minfT ,fd LT (fT (fd(X), YT ) + γmaxi∈{1,2,...,M} LB(f ib(fd(X))). (3)

At each iteration (mini-batch), minimizing (3) will only suppress the model f ib
with the largest LB cost, e.g., the “most confident” one about its current privacy
prediction. The previous basic framework is a special case of (3) with M = 1.
The ensemble strategy can easily be combined with re-starting.
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3.4 Two-Fold Evaluation Protocol

Apart from training data X, assume we have an evaluation set Xe, accompanied
with both target task labels Y e

T and privacy annotations Y e
B. Our evaluation is

significantly more complicated than classical visual recognition problems. After
applying the learned active degradation, we need to examine in two folds: (1)
whether the learned target task model maintains satisfactory performance; (2)
whether the performance of an arbitrary privacy prediction model will deteriorate.
The first one can follow the standard routine: applying the learned fd and fT
to Xe, and computing the classification accuracy AT via comparing fT (fd(Xe))
w.r.t. Y e

T : the higher the better.
The second evaluation is insufficient if we only observe that the learned fd

and fb lead to poor classification accuracy on Xe, because of the ∀ challenge. In
other words, fd needs to generalize not only in the data space, but also w.r.t. the
fb model space. To empirically verify that fb prohibits reliable privacy prediction
for other possible models, we propose a novel procedure: we first re-sample a
different set of N models {f jb }Nj=1 from P; none of them will have overlap with
the M budget models used in training. We then train each of them to predict
privacy information, over the degraded training data X by applying the learned

fd, i.e., minimizing f jb (fd(X)), j = 1, ..., N . Eventually, we apply each trained f jb
and fd on Xe and compute the j-th model classification accuracy. The highest
accuracy achieved among the N models on fd(Xe), denoted as AN

b , will be by
default used to indicate the privacy protection capability of fd: the lower, the
better.

4 Experiments

We present two experiments on privacy-preserving action recognition, as proofs-
of-concept for our proposed general framework. We choose video-based action
recognition for the target task because it is a highly demanded feature in many
smart homes and smart workplaces. The definition of privacy will vary by contexts,
and we will study two settings: (1) avoiding the leak of person identities present
in the current work; and (2) avoiding the leak of multiple privacy attributes,
e.g., multiple crowdsourced attributes studied in [39]. We emphasize that the
generality of the proposed framework (2) can fit in a wide variety of target task
and privacy information compositions.

4.1 Identity-Preserving Action Recognition on SBU

Problem Setting The SBU Kinect Interaction Dataset [67] is a two-person inter-
action dataset for video-based action recognition, with 8 types of actions and 13
different actor pairs annotated.

We define action recognition as the target task T , and the privacy budget
task B as reducing the correct identification rates of the actor pairs in the same
video. We note that the target trade-off is highly challenging to achieve. As can
be seen from the first Table in the supplementary, the actor pair recognition
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task easily achieves over 98% accuracy on the original dataset, and stands robust
even when the frames are downsampled 28 times, while the action recognition
performance already starts to deteriorate significantly. We compare the following
five methods:
– Method 1 (naive downsampling): using raw RGB frames under different
down-sampling rates .
– Method 2 (proposed w/o re-starting): applying the proposed adversarial
training to RGB frames, using budget model ensemble without restarting .
– Method 3 (proposed): applying the proposed adversarial training to RGB
frames, using budget model ensemble with restarting .
– Method 4: detecting and cropping out faces from RGB frames.
– Method 5: detecting and cropping out whole actor bodies from RGB frames.
Method 1 follows [47], while Methods 4 and 5 are inspired by [26].

Implementation Details We segment video sequences into groups of 16 frames,
and use those frame groups as our default input data X. We use the C3D net [60]
as the default action recognition model, i.e. fT . For the fb identity recognition
model, we choose MobileNet [21] to identify actor pair in each frame, and use
average pooling to aggregate the frame-wise predictions. The active degradation
module fd adopts the image transformation network in [24].

We choose γ = 2.0 to suppress the identity recognition performance on SBU.
We first initialize the active degradation module fd as a reconstruction of the
input. We next take the pre-trained version of C3D net and concatenate it with
fd, and jointly train them for action recognition on the SBU dataset, to initialize
fT . We then freeze them both, and start initializing fb (MobileNet) for the actor
pair identification task, by adapting it to the output of the currently trained fd.
Experiments show that such initializations provide robust starting points for the
follow-up adversarial training. If budget model restarting is adopted, we set to
“restart” MobileNet from random initialization after every 100 iterations. The
number of ensemble budget models M varies in {1, 2, 4, 6, 8, 10, 12, 14, 16, 18}.
Different budget models can be obtained via setting different depth-multiplier
parameter [21] of MobileNet.

Evaluation Procedure We will follow the procedure described in Section 3.4,
for two-fold evaluations on the SBU testing set. For the set of models used
towards the privacy-protection examination, we sample N = 10 popular image
classification CNNs, a list of which can be found in the supplementary. Among
them, 8 models start from ImageNet-pretrained versions, including MobileNet [21]
(different from those used in training), ResNet [19] and Inception [55]. To eliminate
the possibility that the initialization might prohibit privacy prediction, we also
intentionally try another 2 models trained from scratch (random initialization).
We did not choose any non-CNN image classification model for two reasons:
(1) CNNs have state-of-the-art performance and also strong fitting capability
when re-trained; (2) most non-CNN image classification models rely on effective
feature descriptors that are designed for natural images. Since fd(X)/fd(Xe) are
no longer natural images, the effectiveness of such models is in jeopardy too.
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Fig. 2: Target and Budget Task Perfor-
mance Trade-off on SBU Dataset.

Results and Analysis We present a
novel visualization in Figure 2,to
display the trade-off between the ac-
tion recognition accuracy AT and the
actor pair recognition accuracy AN

b , in
an easy-to-interpret way. All accuracy
numbers for both task evaluation can
be found in the supplementary. To
read the figure, note that a desirable
trade-off should incur a minimal loss
of AT (y-axis) when reducing AN

b (x-
axis). Therefore, a point closer to the
upper left corner denotes a more
desirable fd model that achieves bet-
ter trade-off, since it incurs less util-
ity performance loss (larger AT ) while
suppressing more even the best of N
unseen privacy prediction models (smaller AN

b ).
For Method 1, a larger marker (circle) size represents a larger downsampling

rate. For Methods 2 and 3, a larger marker (star) size denotes more budget
models used in the ensemble (i.e., larger M). Both Methods 4 and 5 give single
points. Observations can be summarized below:

– Methods 2 and 3 have obvious advantages over naive downsampling (Method
1) in terms of a more compelling trade-off between AT and AN

b .
– Method 3 achieves much better individual model performance than Methods

2, showing the significance of re-starting in overcoming over-fitting.
– For Method 3 (similarly for Method 2), adding more fb models into the budget

model ensemble (i.e., increasing M) consistently leads to points closer to the
desired upper-left (despite small randomness caused by training). The results
show that proposed budget model ensemble technique effectively alleviates
the ∀ challenge, making fd generalize better to unseen fbs.

– Neither Methods 4 nor 5 performs competitively. Cropping out faces does not
add to the protection of identity privacy (its AN

b is almost the same as using
raw RGB frames without downsampling), since body shape and clothing styles
reveal significant amounts of identity information too. Cropping out the body
removes not only identity information but also deteriorates action recognition.

In brief, Method 3 (the proposed, with both restarting and ensemble) is able
to achieve most compelling results on SBU, the best (M = 18) at AT = 82.3%
and AN

b = 41.8%, without relying on extra hardware (e.g., depth camera). A few
visualized examples of learned fd(X) can be found in Figure 5.

4.2 Protecting Multiple Privacy Attributes on UCF-101/VISPR

Problem Setting The UCF101 dataset [54] is a more challenging action recognition
benchmark with 101 different action classes and much richer scenes than SBU.
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The newly-released Visual Privacy (VISPR) dataset [39] is a collection of 22,
167 images annotated with 68 privacy attributes, e.g., semi-nudity, hobbies, face,
race, gender, skin color, and so on.

Either alone cannot be used for our adversarial training because neither
dataset has a pair of competing tasks/labels. However, we show the possibility
of jointly utilizing UCF101 and VISPR to train one fd function, such that it
simultaneously enables effective action recognition (as measured on UCF-101)
and suppresses multiple privacy attribute prediction (as measured on VISPR),
via a novel cross-dataset training and evaluation strategy.

Cross-Dataset Training and Evaluation fd and fT are the same as the SBU
one. Regarding fb for the task of multiple privacy attribute prediction, we adopt
budget models from {ResNet-V1-50, ResNet-V2-50, MobileNet-1.0, MobileNet-
0.75} and vary the number of M in {1, 2, 3, 4}. They are trained with a multi-label
classification loss with sigmoid activations, identically to [39]. γ is chosen as 0.5.
Rather than recognition accuracy, the multiple privacy attribute prediction is
evaluated by Class-based Mean Average Precision (C-MAP), whose definition
can be referred to [39].

The major hassle is the unavailability of T and B on the same dataset:
since UCF-101 does not have privacy attributes annotated, we cannot directly
perform adversarial training and evaluate privacy protection on it; similarly
for VISPR. We notice that [39] trained the model on VISPR to be a privacy
predictor for general images. We also visually observe that the VISPR model
can correctly detect privacy attributes in UCF-101 videos (examples in the
supplementary). Therefore, we hypothesize that the privacy attributes have
the right “transferability” between UCF-101 and VISPR. Thus, we use a privacy
prediction model trained on VISPR to assess the privacy leak risk on UCF-101.

Instead of using all 68 attributes in [39], we find that many of them rarely
appear in UCF-101 (shown in the supplementary). We thus create two subsets
for training and evaluating budget models here: one VISPR-17 set consists of 17
attributes that occur most in UCF-101 and their associated images in VISPR;
the other VISPR-7 set is further a subset of VISPR-17, that include 7 privacy
attributes out of 17 that are most common in smart home settings. Their attribute
lists are in the supplementary.

During training, we have two pipelines: one is fd + fT trained on UCF-101
for action recognition; the other is fd + fb trained on VISPR to suppress multiple
privacy attribute prediction. The two pipelines share the same parameters for fd.
The initialization and alternating training strategy remain unchanged from SBU.
During the evaluation, we perform the first part of the two-fold evaluation, e.g.,
action recognition, on the UCF-101 testing set. We then evaluate the performance
of the N -model examination on privacy protection, using the VISPR-17/7 testing
sets. Such cross-dataset training and evaluation shed on new possibilities on
training privacy-preserving recognition models, even under the practical shortages
of datasets that have been annotated for both tasks.

Results and Analysis We choose Methods 1, 2, and 3 for comparison, defined
the same as SBU. All the quantitative results, as well as visualized examples of
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Fig. 3: Performance Trade-off on UCF-101/VISPR dataset. The left one is on
VISPR-17 and the right one on VISPR-7.

fd(X) on UCF-101, are shown in the supplementary. Similarly to the SBU
case, simply downsampling video frames (even with the aid of super-resolution
as we tried) will not lead to any competitive trade-off between action recognition
(at UCF-101) and privacy prediction suppression (at VISPR). As is shown in
Figure 3, our proposed adversarial training again leads to more favorable trade-
offs on VISPR-17 and VISPR-7, with major conclusions concur with SBU: both
ensemble and restarting help fd generalize better against privacy breach.

5 Limitations and Discussions

One anonymous reviewer noted that a possible alternative to avoid leaking visual
privacy to the cloud is to perform action recognition completely at the local
device. In comparison, our proposed solution is motivated by at least three folds:
i) for a single utility task (which is not just limited to action recognition), running
fd on the device is much more compact and efficient than full fT For example, our
fT model (11-layer C3D net) has over 70 million parameters. In contrast, fd is a
much more compact 3-layer CNN with 1.3 million parameters. At the inference,
the total time cost of running fT over the SBU testing set is 45 times more than
running fd. It also facilitates upgrading to more sophisticated fT models; ii) The
smart home scenario calls for the scalability of multiple utility tasks (computer
vision functions). It is not economical to load all utility models in the device.
Instead, we can train one fd to work with multiple utility models and only store
and run fd at the device. More utility models (if no overlap with privacy) could
be possibly added in the cloud by training on fd(X); iii) We further point out
that the proposed approach can further have a broader practical application
scope beyond the smart home, e.g., de-identified data sharing.

The current pilot study is preliminary in many ways, and there is a large
performance room to improve until achieving practical usefulness. First, the
definition of B and LB is core to the framework. Considering the ∀ challenge, the
current budget model ensemble is a rough discretized approximation of P. More
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Original RGB Frame from UCF-101 (Label: Pushing)

Method 2, M=1 Method 2, M=4 Method 2, M=8 Method 2, M=14

Method 3, M=1 Method 3, M=4 Method 3, M=8 Method 3, M=14

Fig. 4: Example frames after applying the learned degradation on SBU.

elegant ways to tackle this ∀ optimization can lead to further breakthroughs in
universal privacy protection. Second, adversarial training is well-known to be
difficult and unstable. Improved training tricks, such as [48], will be useful.

Third, a lack of related benchmark datasets, on which T and B are both
appropriately defined, has become a bottleneck. We see that more concrete
and precise privacy definitions, such as VISPR attributes, can undoubtedly
result in better feature disentanglement and T -B performance trade-offs. Current
cross-dataset training and evaluation partially alleviate the absence of dedicated
datasets. However, the inevitable domain mismatch between two datasets can
still hurdle the performance. We plan to refer to crowdsourcing to identify
and annotate privacy-related attributes on existing action recognition or other
benchmarks, which we hope could help promote this research direction.



Privacy-Preserving Visual Recognition via Adversarial Training 15

References

1. Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 308–318. ACM, 2016.

2. Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Sequential deep learning for human action recognition. In International
Workshop on Human Behavior Understanding, pages 29–39. Springer, 2011.

3. Daniel J Butler, Justin Huang, Franziska Roesner, and Maya Cakmak. The privacy-
utility tradeoff for remotely teleoperated robots. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot Interaction, pages 27–34.
ACM, 2015.

4. Ankur Chattopadhyay and Terrance E Boult. Privacycam: a privacy preserving cam-
era using uclinux on the blackfin dsp. In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

5. Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Action recognition from depth
sequences using depth motion maps-based local binary patterns. In Applications of
Computer Vision (WACV), 2015 IEEE Winter Conference on, pages 1092–1099.
IEEE, 2015.

6. Jiawei Chen, Jonathan Wu, Janusz Konrad, and Prakash Ishwar. Semi-coupled
two-stream fusion convnets for action recognition at extremely low resolutions.
arXiv preprint arXiv:1610.03898, 2016.

7. Bowen Cheng, Zhangyang Wang, Zhaobin Zhang, Zhu Li, Ding Liu, Jianchao Yang,
Shuai Huang, and Thomas S Huang. Robust emotion recognition from low quality
and low bit rate video: A deep learning approach. In Affective Computing and
Intelligent Interaction (ACII), 2017 Seventh International Conference on, pages
65–70. IEEE, 2017.

8. Graham Cormode. Individual privacy vs population privacy: Learning to attack
anonymization. arXiv preprint arXiv:1011.2511, 2010.

9. Ji Dai, Behrouz Saghafi, Jonathan Wu, Janusz Konrad, and Prakash Ishwar. Towards
privacy-preserving recognition of human activities. In Image Processing (ICIP),
2015 IEEE International Conference on, pages 4238–4242. IEEE, 2015.

10. Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. Disentangling factors
of variation via generative entangling. arXiv preprint arXiv:1210.5474, 2012.

11. Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1110–1118, 2015.

12. Cynthia Dwork. Differential privacy: A survey of results. In International Conference
on Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

13. Zekeriya Erkin, Martin Franz, Jorge Guajardo, Stefan Katzenbeisser, Inald La-
gendijk, and Tomas Toft. Privacy-preserving face recognition. In International
Symposium on Privacy Enhancing Technologies Symposium, 2009.

14. Farhad Farokhi and Henrik Sandberg. Fisher information as a measure of pri-
vacy: Preserving privacy of households with smart meters using batteries. IEEE
Transactions on Smart Grid, 2017.

15. Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monoc-
ular depth estimation with left-right consistency. In CVPR, volume 2, page 7,
2017.



16 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

16. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

17. Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

18. Jihun Hamm. Minimax filter: learning to preserve privacy from inference attacks.
The Journal of Machine Learning Research, 18(1):4704–4734, 2017.

19. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. arXiv preprint arXiv:1512.03385, 2015.

20. Irina Higgins, Arka Pal, Andrei A Rusu, Loic Matthey, Christopher P Burgess,
Alexander Pritzel, Matthew Botvinick, Charles Blundell, and Alexander Lerchner.
Darla: Improving zero-shot transfer in reinforcement learning. arXiv:1707.08475,
2017.

21. Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

22. Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. IEEE transactions on pattern analysis and machine
intelligence, 35(1):221–231, 2013.

23. Li Jia and Richard J Radke. Using time-of-flight measurements for privacy-
preserving tracking in a smart room. IEEE Transactions on Industrial Informatics,
10(1):689–696, 2014.

24. Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time
style transfer and super-resolution. In European Conference on Computer Vision,
2016.

25. Jing Li, Stan Z Li, Quan Pan, and Tao Yang. Illumination and motion-based
video enhancement for night surveillance. In Visual Surveillance and Performance
Evaluation of Tracking and Surveillance, 2005. 2nd Joint IEEE International
Workshop on, pages 169–175. IEEE, 2005.

26. Yifang Li, Nishant Vishwamitra, Bart P Knijnenburg, Hongxin Hu, and Kelly Caine.
Blur vs. block: Investigating the effectiveness of privacy-enhancing obfuscation for
images. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2017
IEEE Conference on, pages 1343–1351. IEEE, 2017.

27. Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

28. Ding Liu, Bowen Cheng, Zhangyang Wang, Haichao Zhang, and Thomas S Huang.
Enhance visual recognition under adverse conditions via deep networks. arXiv
preprint arXiv:1712.07732, 2017.

29. Ping Liu, Joey Tianyi Zhou, Ivor Wai-Hung Tsang, Zibo Meng, Shizhong Han, and
Yan Tong. Feature disentangling machine-a novel approach of feature selection and
disentangling in facial expression analysis. In European Conference on Computer
Vision, pages 151–166. Springer, 2014.

30. Behrooz Mahasseni, Sinisa Todorovic, and Alan Fern. Budget-aware deep semantic
video segmentation.

31. Aravindh Mahendran and Andrea Vedaldi. Visualizing deep convolutional neural
networks using natural pre-images. International Journal of Computer Vision,
2016.

32. Richard McPherson, Reza Shokri, and Vitaly Shmatikov. Defeating image obfusca-
tion with deep learning. arXiv preprint arXiv:1609.00408, 2016.



Privacy-Preserving Visual Recognition via Adversarial Training 17

33. Alan Mislove, Bimal Viswanath, Krishna P Gummadi, and Peter Druschel. You
are who you know: inferring user profiles in online social networks. In Proceedings
of the third ACM international conference on Web search and data mining, pages
251–260. ACM, 2010.

34. Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 173–187. IEEE, 2009.

35. Shree K Nayar and Srinivasa G Narasimhan. Vision in bad weather. In Computer
Vision, 1999. The Proceedings of the Seventh IEEE International Conference on,
volume 2, pages 820–827. IEEE, 1999.

36. Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436,
2015.

37. Seong Joon Oh, Rodrigo Benenson, Mario Fritz, and Bernt Schiele. Faceless person
recognition: Privacy implications in social media. In European Conference on
Computer Vision, pages 19–35. Springer, 2016.

38. Seong Joon Oh, Mario Fritz, and Bernt Schiele. Adversarial image perturbation
for privacy protection–a game theory perspective. In International Conference on
Computer Vision (ICCV), 2017.

39. Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Towards a visual pri-
vacy advisor: Understanding and predicting privacy risks in images. In IEEE
International Conference on Computer Vision (ICCV), 2017.

40. Tribhuvanesh Orekondy, Bernt Schiele, Mario Fritz, and Saarland Informatics
Campus. Towards a visual privacy advisor: Understanding and predicting privacy
risks in images. arXiv preprint arXiv:1703.10660, 2017.

41. Francesco Pittaluga and Sanjeev J Koppal. Privacy preserving optics for miniature
vision sensors. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 314–324, 2015.

42. Francesco Pittaluga and Sanjeev Jagannatha Koppal. Pre-capture privacy for small
vision sensors. IEEE transactions on pattern analysis and machine intelligence,
39(11):2215–2226, 2017.

43. Nisarg Raval, Ashwin Machanavajjhala, and Landon P Cox. Protecting visual secrets
using adversarial nets. In Computer Vision and Pattern Recognition Workshops
(CVPRW), 2017 IEEE Conference on, pages 1329–1332. IEEE, 2017.

44. M. S. Ryoo, T. J. Fuchs, L. Xia, J. K. Aggarwal, and L. Matthies. Robot-centric ac-
tivity prediction from first-person videos: What will they do to me? In ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 295–302, Port-
land, OR, March 2015.

45. M. S. Ryoo and L. Matthies. First-person activity recognition: What are they doing
to me? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Portland, OR, June 2013.

46. Michael S Ryoo, Kiyoon Kim, and Hyun Jong Yang. Extreme low resolu-
tion activity recognition with multi-siamese embedding learning. arXiv preprint
arXiv:1708.00999, 2017.

47. Michael S Ryoo, Brandon Rothrock, Charles Fleming, and Hyun Jong Yang. Privacy-
preserving human activity recognition from extreme low resolution. 2017.

48. Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. Improved techniques for training gans. In Advances in Neural
Information Processing Systems, pages 2234–2242, 2016.



18 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

49. Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions:
a local svm approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, volume 3, pages 32–36. IEEE, 2004.

50. Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using
visual attention. arXiv preprint arXiv:1511.04119, 2015.

51. N Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank
Wood, Noah D Goodman, Pushmeet Kohli, and Philip HS Torr. Learning disentan-
gled representations in deep generative models. 2016.

52. Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for
action recognition in videos. In Advances in neural information processing systems,
pages 568–576, 2014.

53. Jure Sokolic, Qiang Qiu, Miguel RD Rodrigues, and Guillermo Sapiro. Learning to
succeed while teaching to fail: Privacy in closed machine learning systems. arXiv
preprint arXiv:1705.08197, 2017.

54. Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

55. Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2818–
2826, 2016.

56. Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

57. Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2014.

58. Shuai Tao, Mineichi Kudo, and Hidetoshi Nonaka. Privacy-preserved behavior anal-
ysis and fall detection by an infrared ceiling sensor network. Sensors, 12(12):16920–
16936, 2012.

59. TechCrunch. Amazon’s camera-equipped echo look raises new questions about
smart home privacy. http://alturl.com/7ewnu.

60. Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. In Computer
Vision (ICCV), 2015 IEEE International Conference on, pages 4489–4497. IEEE,
2015.

61. Zhangyang Wang, Shiyu Chang, Yingzhen Yang, Ding Liu, and Thomas S Huang.
Studying very low resolution recognition using deep networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016.

62. Daniel Weinland, Remi Ronfard, and Edmond Boyer. Free viewpoint action recog-
nition using motion history volumes. Computer vision and image understanding,
104(2):249–257, 2006.
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Appendix A Adversarial Training Algorithm

Algorithm 1 outlines a complete and unified adversarial training algorithm using
the ensemble of M budget models, with restarting. If we choose M = 1 and skip
the restarting step, it is reduced to the basic adversarial training framework.

The algorithm could also be viewed as a 3-competitor game: fd as an obfus-
cator, fb (or the ensemble) as an attacker, and fT as an utilizer. Algorithm 1
then essentially solves the following two optimization problems iteratively (single
fb case for example):

min
fd,fT

LT (fT (fd(X)), YT )− γH(fb(fd(X))), (4)

min
fb∈P

LB(fb(fd(X)), YB). (5)

where both LT and LB are softmax functions, H is the entropy function. In the
M -ensemble case, (5) will search for the worst case to minimize.

Appendix B Experiments on SBU

B.1 Results for Methods 1

The proposed identity-preserving action recognition task on SBU is a very
challenging one, since videos are taken in highly controlled indoor environments
and all actors are clearly viewable in the central regions of each frame. The
identity recognition task can also utilize information other than faces: the body
shape and even clothes colors are invariant for the same actor across different
videos/actions. Different actors wear very distinct clothes with different colors
and textures. Table 1 displays the trade-off numbers at different downsampling
ratios s, for Methods 1.

B.2 Two-Fold Evaluation Results for Methods 2 and 3

Table 2 displays the details numbers, for the second part of our proposed two-fold
evaluation, with N = 10 models. The top sub-table is for Method 2, and the
bottom sub-table for Method 3.
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Algorithm 1 Adversarial Training for Privacy-Preserving Visual Recognition.

Given pre-trained active degradation module fd, target task module fT , and M
budget modules {f1

b , · · · fM
b }

for number of training iterations do
Sample a mini-batch of k examples {X1, · · · , Xk}
Update active degradation module fd (weights wd) with stochastic gradients:

. Suppress only the most confident one among all M budget models
. The L1 Loss term is only used in the SBU experiment

. The Lb is negative entropy loss

∇wd
1
k

k∑
j=1

[LT (fT (fd(Xj)), YTj)+γ max
i∈{1,··· ,M}

Lb(f
i
b(fd(Xj)))+α||fd(Xj)−Xj ||1]

while target task validation accuracy ≤ Threshold1 do
. Threshold1 = 90% for SBU and 70% for UCF101/VISPR

Sample mini-batch of k examples {X1, · · · , Xk}
Update target task module fT (weights wT ) and active degradation
module fd (weights wd), with stochastic gradients:

. Avoid too weak competitor on the fT side.

∇wT
1
k

k∑
j=1

LT (fT (fd(Xj)), YTj), ∇wd
1
k

k∑
j=1

LT (fT (fd(Xj)), YTj)

end while
while budget task training accuracy ≤ Threshold2 do

. Threshold2 = 95% for both datasets
Sample mini-batch of k examples {X1, · · · , Xk}
Update budget task module fb (weights wb) by stochastic gradients:

. Avoid too weak competitor on the fb side.

∇wb
1
k

k∑
j=1

M∑
i=1

Lb(f
i
b(fd(Xj)), YBj) . The Lb is cross-entropy loss

end while
if current training iteration % 100 = 0 then

. We empirically restart all M budget models every 100 iterations
Restart all M budget models, and repeat Algorithm 1 from the beginning.

end if
end for
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The corresponding action recognition results, i.e. the first part of two-fold
evaluation, are also attached after either sub-Table.

We want to make an additional note here: for Methods 1, 4 and 5, the
privacy prediction is evaluated using only one model; while in Methods 2 and 3,
the privacy suppression effect is evaluated using the highest achievable number
among N = 10 different models. Therefore, the evaluation protocol for Methods
2 and 3 is “stricter”, and its gain on privacy protection compared to Methods 1,
4, 5 will be essentially “underestimated”, if we just directly compare accuracy
numbers.

B.3 Visualization Examples of Learned Degradations on SBU

Please refer to Figure 5 for visualized examples of learned fd(X).

Table 1: The action recognition and actor pair recognition accuracies w.r.t. the
spatial downsampling ratio s, using pre-trained C3D net and MobileNet.

s=1 s=2 s=3 s=4 s=6 s=8 s=14 s=16 s=28 s=56

Method 1
Action 88.83 87.90 86.98 81.86 79.53 74.88 65.12 64.37 56.28 33.49

(RGB Downsampling) Actor 98.87 97.23 96.45 95.50 95.24 94.11 93.94 92.15 90.28 60.93

Appendix C Experiments on UCF-101 / VISPR

C.1 “Transferability” Study of Privacy Attributes between
UCF-101 and VISPR

Selection of 17 and 7 Privacy Attributes There are 13,421 videos in the
UCF-101 dataset. For each video, we evaluate it using the privacy attribute
prediction model pretrained on VISPR dataset: see the statistic plot in Figure
Figure 6, we observe that there are 43 attributes that can be found at least once
in UCF101 videos. But only 17 out of the 43 are frequently occurring. These
17 attributes are {age approx, weight approx, height approx, gender, eye color,
hair color, face complete, face partial, semi-nudity, race, color, occupation, hob-
bies, sports, personal relationship, social relationship, safe}.

Among the 17 frequent attributes, we carefully select 7 privacy attributes that
best fit the smart home setting. These 7 attributes are {semi-nudity, occupation,
hobbies, sports, personal relationship, social relationship}.

Privacy Attribute Examples in UCF-101 In Figure 7, we show some ex-
ample frames from UCF101 with privacy attributes predicted using the VISPR-
pretrained model. In each example, the right column denotes the predicted privacy
attributes (as defined in the VISPR dataset [40]) and associated confidences from
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Original RGB Frame from UCF-101 (Label: HandStandPushup)

Method 2, M=1 Method 2, M=2 Method 2, M=4 Method 2, M=6

Method 3, M=1 Method 3, M=2 Method 3, M=4 Method 3, M=6

Method 2, M=8 Method 2, M=10 Method 2, M=12 Method 2, M=14

Method 3, M=8 Method 3, M=10 Method 3, M=12 Method 3, M=14

Fig. 5: Example frames after applying the learned degradation on SBU
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Table 2: SBU Two Fold Evaluation
M=1 M=2 M=4 M=6 M=8 M=10 M=12 M=14 M=16 M=18

resnet v1 50 70.8 65.4 70.3 67.2 65.1 68.3 65.8 61.7 62.4 59.3
resnet v1 101 68.3 67.6 71.4 69.4 66.8 69.7 63.0 62.5 59.2 57.0
resnet v2 50 62.6 62.1 61.9 64.9 63.3 62.3 58.4 61.1 62.9 60.8
resnet v2 101 69.6 66.9 71.4 68.9 66.1 64.2 65.2 64.9 64.8 60.0

mobilenet v1 100 73.6 71.8 72.9 65.4 65.7 71.2 67.5 65.4 67.3 63.2
mobilenet v1 075 71.3 72.4 71.4 70.9 66.5 66.3 66.1 66.3 65.5 61.1

inception v1 66.7 60.8 66.4 58.9 64.2 60.5 58.5 61.8 57.4 63.5
inception v2 60.6 61.3 68.7 67.6 60.3 59.1 62.3 61.1 61.6 62.1

mobilenet v1 050‡ 71.2 70.5 69.6 71.6 67.2 70.6 67.5 65.2 64.4 63.2

mobilenet v1 025‡ 70.6 71.5 71.9 70.2 66.4 70.7 69.8 65.8 65.5 64.2

C3D 83.2 84.1 82.7 83.6 80.8 88.3 82.7 83.3 83.5 82.6

M=1† M=2† M=4† M=6† M=8† M=10† M=12† M=14† M=16† M=18†

resnet v1 50 55.5 47.2 54.1 46.9 41.9 42.8 44.2 38.4 37.3 32.4
resnet v1 101 49.7 54.6 40.2 51.2 44.9 57.2 44.7 41.7 42.2 34.5
resnet v2 50 42.3 49.7 52.9 40.8 42.3 43.8 57.8 40.4 40.9 35.2
resnet v2 101 54.4 38.9 49.2 44.9 41.5 44.8 44.02 42.0 39.6 50.6

mobilenet v1 100 60.5 55.8 51.2 49.8 47.7 45.3 42.8 43.1 41.9 41.8
mobilenet v1 075 58.2 57.9 52.4 51.1 46.9 44.1 45.2 41.8 41.2 40.2

inception v1 51.3 54.4 45.8 44.9 42.5 41.2 44.8 38.8 35.3 45.8
inception v2 44.2 38.2 42.4 49.4 45.9 44.3 41.0 42.5 39.4 47.1

mobilenet v1 050‡ 58.2 56.2 54.6 46.6 43.6 41.2 38.5 39.3 34.2 35.8

mobilenet v1 025‡ 54.8 54.3 52.9 52.5 43.5 44.7 41.1 42.6 42.5 38.5

C3D 81.7 82.6 78.0 82.8 82.2 82.1 83.5 83.1 82.6 82.3

‡ stands for training from scratch instead of fine-tuning and † stands for budget model restarting.
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Fig. 6: Attribute-wise occurrence statistics on UCF-101 videos, evaluated using
the pretrained privacy prediction model on VISPR.

the left column frames, showing a high risk of privacy leak in daily common videos.
We qualitatively examine a large number of UCF-101 frames and determine that
privacy attributes prediction are highly reliable.

C.2 UCF-101 / VISPR Two-Fold Evaluation

The trade-off results between UCF-101 with VISPR-17 and VISPR-7 are found in
Tables 3 and 4, respectively. Note that for the N=10 privacy attribute prediction
evaluation, the results are in class-based MAP (cMAP) rather than recognition
accuracy.

C.3 Visualization Examples of Learned Degradation on UCF-101 /
VISPR

For visualized examples of learned fd(X), please refer to Figure 8 for VISPR-17
and VISPR-7.
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(a) ApplyLipStick (b) BabyCrawling

(c) PlayingPiano (d) ShavingBeard

(e) Situp (f) YoYo

Fig. 7: Privacy attributes prediction on example frames from UCF101. The right
column denotes the predicted privacy attributes (as defined in the VISPR dataset
[40]) and associated confidences from the left column frames, showing a high risk
of privacy leak in daily common videos.



26 Zhenyu Wu, Zhangyang Wang, Zhaowen Wang and Hailin Jin

Original RGB Frame from UCF-101 (Label: HandStandPushup)

Method 2, M=1
(VISPR-17)

Method 2, M=2
(VISPR-17)

Method 2, M=3
(VISPR-17)

Method 2, M=4
(VISPR-17)

Method 3, M=1
(VISPR-17)

Method 3, M=2
(VISPR-17)

Method 3, M=3
(VISPR-17)

Method 3, M=4
(VISPR-17)

Method 2, M=1
(VISPR-7)

Method 2, M=2
(VISPR-7)

Method 2, M=3
(VISPR-7)

Method 2, M=4
(VISPR-7)

Method 3, M=1
(VISPR-7)

Method 3, M=2
(VISPR-7)

Method 3, M=3
(VISPR-7)

Method 3, M=4
(VISPR-7)

Fig. 8: Example frames after applying the learned degradation on UCF-101 with
adversarial training on VISPR-17 and VISPR-7
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Table 3: UCF-101 / VISPR-17 Two-Fold Evaluation
M=1 M=1† M=2 M=2† M=3 M=3† M=4 M=4†

resnet v1 50 66.68 63.45 62.12 63.78 65.59 62.12 65.12 59.83
resnet v1 101 65.78 59.24 62.48 61.29 59.59 61.23 64.21 61.49
resnet v2 50 62.12 65.28 66.94 62.48 59.59 59.56 62.34 60.47
resnet v2 101 59.12 61.45 57.59 59.43 58.32 61.43 64.23 59.48

mobilenet v1 100 63.45 58.48 62.69 61.47 64.39 61.59 65.01 57.43
mobilenet v1 075 62.23 62.48 64.28 59.47 60.27 58.57 55.48 57.57

inception v1 58.32 62.49 59.39 64.82 63.57 61.39 63.58 58.46
inception v2 65.79 61.28 64.52 63.58 60.49 63.58 60.25 59.39

mobilenet v1 050‡ 65.12 60.25 64.29 59.49 62.48 63.58 63.58 62.06

mobilenet v1 025‡ 62.54 63.59 62.58 62.46 60.47 59.20 58.27 61.36

C3D 66.58 66.36 64.46 65.27 65.28 65.89 66.59 65.83

‡ stands for training from scratch instead of fine-tuning and † stands for budget model
restarting

Table 4: UCF-101 / VISPR-7 Two-Fold Evaluation
M=1 M=1† M=2 M=2† M=3 M=3† M=4 M=4†

resnet v1 50 40.68 38.24 38.45 35.67 35.34 32.54 35.58 33.41
resnet v1 101 32.21 37.69 37.31 36.21 37.35 34.53 37.48 32.67
resnet v2 50 33.46 37.13 39.94 36.28 32.59 34.13 36.69 33.46
resnet v2 101 35.25 34.49 32.58 35.38 38.59 35.16 37.24 31.53

mobilenet v1 100 33.28 35.24 37.54 32.48 31.59 28.36 32.48 29.57
mobilenet v1 075 28.59 34.58 38.23 31.59 35.38 30.94 29.58 32.58

inception v1 35.28 37.56 36.84 27.48 29.48 30.48 32.04 34.48
inception v2 38.47 36.39 35.29 30.92 28.59 33.59 35.38 29.58

mobilenet v1 050‡ 38.49 28.49 32.56 33.48 31.58 32.58 38.32 33.48

mobilenet v1 025‡ 35.47 38.42 34.93 31.28 33.37 34.78 33.57 30.08

C3D 65.16 65.58 64.53 66.46 65.38 64.28 64.83 65.37

‡ stands for training from scratch instead of fine-tuning and † stands for budget model
restarting
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