
Learning 3D Shapes as Multi-Layered
Height-maps using 2D Convolutional Networks

Kripasindhu Sarkar1,2, Basavaraj Hampiholi2,
Kiran Varanasi1, and Didier Stricker1,2

1DFKI Kaiserslautern 2Technische Universität Kaiserslautern
{kripasindhu.sarkar,basavaraj.hampiholi,
kiran.varanasi,didier.stricker}@dfki.de

Abstract. We present a novel global representation of 3D shapes, suit-
able for the application of 2D CNNs. We represent 3D shapes as multi-
layered height-maps (MLH) where at each grid location, we store multiple
instances of height maps, thereby representing 3D shape detail that is
hidden behind several layers of occlusion. We provide a novel view merg-
ing method for combining view dependent information (Eg. MLH de-
scriptors) from multiple views. Because of the ability of using 2D CNNs,
our method is highly memory efficient in terms of input resolution com-
pared to the voxel based input. Together with MLH descriptors and our
multi view merging, we achieve the state-of-the-art result in classification
on ModelNet dataset.

Keywords: CNN on 3D Shapes, 3D Shape Representation, ModelNet,
Shape Classification, Shape Generation

1 Introduction

Over the last few years, Convolutional Neural Networks (CNNs) have completely
dominated in solving vision based problems in 2D images achieving the state-of
the-art-results in various domains [10,26,7,3,4,19,12,6,18,11,15]. These methods
are motivated through the large amount of work in designing core network archi-
tectures, such as GoogLeNet [29], ResNet [7], InceptionV3/V4 [30] etc. because
of a) the ease of performing convolution operation on the 2D image grids and b)
the availability of large scale labelled image databases such as ImageNet [21].

However, applying the ideas from these powerful CNNs on 3D shapes is
not straightforward, as transcribing the shapes into a common parameteriza-
tion/description is a necessary first step for the application of CNN. The sim-
plest descriptor - the voxel occupancy grid - makes it possible in theory to apply
analogous 3D networks of 2D images (VGG, ResNet, Inception, etc.) to the 3D
voxel representation. In practice, it is not feasible as the memory and compu-
tation grows ‘cubically’ with resolution of the voxel representation, making it
difficult to perform research in designing core network for 3D shapes. Thus, the
existing voxel based 3D networks are limited to low input resolutions (on the
order of 323) [14,32,28,2]. Other methods for 3D specific tasks are the invention
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of new geometric representation or network architecture targated for 3D shapes
[20,16,9], and the use of appearance based approaches of using rendered images
[25,8,28]. Appearance based methods are by design not appropriate for geome-
try based tasks such as shape generation, reconstruction, etc., though they are
excellent choices for appearance based tasks such as classification and retrieval.

In this paper, we present a novel geometry centric descriptor for 3D shapes,
suitable for the application of 2D CNNs. We represent 3D shapes as multi-layered
height-maps. At each grid location, we store multiple instances of height-maps,
thereby representing 3D shape detail that is hidden behind several layers of oc-
clusion. Using this parameterization, that is intuitive and simple to construct,
we learn 3D shapes using 2D convolutional neural network models and show
state-of-the-art classification result on the ModelNet dataset [32]. Our descriptor
provides the following advantages: 1) It is geometry centric, making it appropri-
ate for solving both appearance and geometry based tasks 2) It enables the use
of well-investigated 2D CNNs in the context of 3D shapes, which is not possible
in voxel based representation and other new 3D architectures; and the ability of
taking advantage of pretrained 2D CNNs trained using large scale image data.
3) As a consequence, it provides a highly memory efficient CNN architecture for
3D shapes which is comparable to that of OctNet [20], while being similar in
performance.

The multi-layered height-map (MLH) representation is generic and suitable
to any 3D shape, irrespective of topology and volumetric density in shape rep-
resentation. It does not need a pre-estimation of 3D mesh structure, and can be
computed directly on point clouds. Our work is in contrast to more shape-aware
parameterizations which require the knowledge of the 3D mesh topology of the
shapes, which can then be used to create a mesh quadrangulation, or learning
an intrinsic shape description in the Eigenspace of the mesh Laplacian [13,23].
Our MLH parameterization is suited for learning the shape features in a large
dataset of diverse 3D shapes. In this sense, it is comparable to 3D voxel grids, but
without the associated memory overhead. Our contributions are the following:

– We propose a novel multi-layered height-map (MLH) based global represen-
tation for 3D shapes suitable for 2D CNNs for various tasks.

– We propose a novel multi-view merging technique for CNNs involving dif-
ferent input branches to combine information from multiple sources of an
instance into a single compact descriptor.

– We present state-of-the-art result on ModelNet benchmark [32] for classifi-
cation using our multi-view CNN and MLH descriptors.

The following section describes the related work. Section 3 explains in detail
the multilayered height-map based features for 3D shapes and simple 2D CNNs
for the problem of classification. We present in Section 4 our Multi-view CNN
architecture for combining the global features along different views. We follow
that with the experiments section evaluating different design choices.
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2 Related Work

Core 2D convolution networks AlexNet[10] was the first deep CNN model
trained in GPU for the task of classification, and is still often used as the base
model or feature extractors for performing other tasks. Other famous models
which are often used as base CNN are VGG [26], GoogLeNet [29], ResNet [7],
InceptionV3/V4 [30]. VGG is a simple network which uses a series of small
convolution filters of size 3×3 followed by fully connected layers. GoogLeNet and
InceptionV3/V4 models provide deeper networks with computational efficiency
containing efficient ‘inception’ modules. ResNet on the other hand uses only 3×3
convolution with residual connections. We use the 16 layered VGG [26] as our
base CNN model because of its simplicity.
3D convolution networks on voxel grid Voxel sampling is the method where
a 3D shape is represented as a binary occupancy grid in a 3D voxel grid. Wu et
al.[32] uses deep 3D CNN for voxelized shapes of resolution 303 and provides the
classification benchmark dataset of ModelNet40 and ModelNet10. This work is
followed by VoxNet which uses voxels of resolution 323 [14]. Recently, network
elements from 2D CNNs such as inception modules and residual connections
have been integrated in 3D CNNs which gave a huge performance gain over
the traditional 3D CNNs [2]. Because of the fundamental problem of memory
overhead associated with 3D networks, the input size was restricted to 323. Fine-
grained analysis specific to shape classification and 3D CNN have been performed
in [17,24] making them the top performers in shape classification. In contrast
to voxel gird, we use our multi-layer descriptors and use 2D CNN and perform
better both in terms of accuracy and computation overhead in the task of shape
classification in ModelNet benchmark.
View-dependent rendering methods Image-view based methods take some
sort of virtual snapshots (rendering or depth image) of the shape and then design
a 2D CNN architecture to solve the task of classification. Their contributions
are combination of a novel feature descriptors based on rendering [25,8,28], and
novel changes in the network architecture for the purpose of classification based
on appearance [31]. As explained in Sections 3.1 and 5.4, our representation
with 1 layer performs similar for the task of classification in comparison to the
image-view based methods.
2D slices Gomez-Donoso et al. [5] represents shape by ‘2D slices’ - the binary
occupancy information along the cross section of the shape at a fixed height.
A multi-view CNN architecture is then developed to feed 3 such slices (across
the 3 canonical axes) for classification. In contrast to this work, (1) our MLH
descriptor have k height values (k ≈ 5) from the reference grid, and therefore
informative enough to be used as a descriptor even for single view CNN, (2) our
descriptor is generative (full shape outline can be generated - Section 5.5) and
holds promise towards solving other geometry centric tasks.
Specialized networks for 3D More recently, there has been a serious effort to
have alternative ways of applying CNNs in 3D data such as OctNet [20] and Kd-
tree network [9]. Kd-tree network uses Kd tree as the underlying data structure
and learns a representation of the input for solving various tasks, providing an
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Fig. 1: (Left) Multi-layered height-map descriptors for a shape with the view
along Z. (Right) Visualization of the corresponding descriptor with k = 3 from
3 different views of X, Y and Z.

excellent alternative of CNN on 3D data. OctNet on the other hand, uses a
compact version of voxel based representation where only the occupied grids are
stored in an octree instead of the entire voxel grid. It has similar computational
power as the voxel based CNNs while being extremely memory efficient enabling
3D CNNs with 2563 input. We show that our one view descriptor of resolution
256 and a simple 2D CNN performs similar to OctNet in terms of classification
accuracy and memory requirements.
Unordered point clouds and patches It is possible to sample the 3D shape
to a finite number of 3D points and collect their XYZ coordinates into a 1D vec-
tor. This representation is compact, but it has no implicit spatial ordering that
aligns with the real world. Achlioptas et al. [1] in a recent submission uses such
represenation to generate 3D shapes and also achieve good accuracy in Model-
Net10. PointNet [16] is another such network that takes unstructured 3D points
as input and gets a global feature by using max pool as a symmetrical function
on the output of multi-layer perceptron on individual points. Our method is
conceptually different as it respects the actual spatial ordering of points in the
3D space. Sarkar et al. [22,23] learn from a dataset of unordered 3D patches,
which are detected and oriented using a quadrangulation approach. They repre-
sent the spatial ordering at the patch level, but not at the global context of the
3D shape like our method. Further, our method does not require such a prior
quadrangulation step.

3 Multi-Layered Height-map descriptors

MLH descriptor represents a 3D shape with multiple instance of ‘height-map’
from a discrete reference grid depicting multiple surface layers. In comparison to
voxel occupancy grid structure, where each voxel bin stores the model occupancy
information, our representation stores a list of k ‘heights’ or displacement maps
in each bin of the 2D reference grid. The idea is to consider k sample height
values of the entire cross-section of the shape intersecting or falling along the
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Algorithm 1: Computation of MLH descriptors

Notation: A[i,j,k,...] denotes the element of A at index i, j, k, . . .
Input: shape - S, resolution - N , number of layers - k, direction n̂
Output: MLH descriptor M of dimension (N ×N × k)
Initialise: M ← full(Inf)

1 Orient S using n̂ and scale it to contain in unit bounding box.
2 Densely sample points in S to get the point-cloud C.
3 Place an N ×N square grid of unit length on the X-Y plane of the boundig box.
4 Project C in the grid and collect the z-coordinates (height values) in the bins.
5 foreach bin (p, q) ∈ {1, . . . , N} do

// let Ppq be the set of height values of the points falling in

the bin (p, q)
6 if Ppq is not empty then

7 when k > 1, M[p,q,i] ← ((i− 1)/(k− 1) ∗ 100)th percentile of Ppq for each
i ∈ {1, . . . , k}

8 otherwise, M[p,q,i] ← 0th percentile Ppq (or minimum of Ppq).

bins of the 2D grid. For implementation of this idea, we first convert the shape
into a point cloud and process on them as explained in Algorithm 1.

The empty bins with no surface intersection are represented by a value
slightly higher than the maximum possible height (Inf = 1.2, or surface with
infinite height), for differentiating them from the valid height values. The points
are uniformly and densely sampled from the shape so that we get atleast k points
in a bin when it is occupied (Step 2). We take percentile values for different layers
(in comparison to other sampling strategy - Eg. ‘slices’ at equidistant locations,
minimum k values etc.). This preserves the semantics for the 1st and kth layers
as the bottom and top surfaces respectively. The layers between them represent
the intermediate shape information hidden from outside.

View direction The MLH representation is dependent on the plane normal
n̂ - the direction along which the height-map is computed - making it a view
based descriptor. We call this view direction in the subsequent sections. More
on the choice of the view directions are covered in the subsequent sections.

3.1 Comparison to other shape representations

Voxel sampling In contrast to 3D voxel occupancy grid, our representation
stores distance from the reference plane in the view direction instead of the
binary occupancy. Since continuous distance is more precise than the discretized
occupancy bins, our representation provides more information along the view
direction, provided the number of surfaces falling on a bin is less than k. This
case is already satisfied for most of the cases with k = 5, except for the surfaces
parallel (or near parallel) to the view directions. Therefore MLH in general, is
more expressive than voxel occupancy grid with a good chosen direction while
being less in memory (N3 vs kN2).



6 Sarkar et al.

Depth images With k = 1, our feature descriptor reduces to depth image
representation of a shape with orthographic projection (instead of perspective
projection of the depth camera).

Rendered images Even though a rendered image is dependent on shading
model, geometric 3D features (corners and edges) appear as a result of perspec-
tive projection of the 3D model to the 2D plane of the image. Therefore our
representation with k = 1 is similar in nature to the rendered images with or-
thogonal projection. This premise is supported by the similarity of our result of
classification accuracy in ModelNet40 with k = 1, to the popular technique of
MVCNN [28] which uses rendered images.

3.2 Classification networks

Due to the fact that MLH descriptors are multi channel 2D grids, we can directly
apply any feed forward 2D CNN with a classification loss (eg. cross entropy loss
or SVM loss) for classification. In the simplest form, we use the view of one
consistent direction in our MLH features. For incorporating different views, we
can treat each view as different training instance and take the sum of all the
views at the testing time. We can also treat the views separately and have a
merging technique coming from different views. We discuss this in detail in the
next section.

This also enables us to use popular 2D CNNs such as AlexNet, VGG, ResNet
etc (with k input channels instead of 3 for images) for 3D shape related tasks.
These popular networks have been trained on ImageNet database consisting of
millions of images. Since the number of instances in 3D databases are much less
than that of 2D databases (12K in ModelNet40 compared to 1.2M in ImageNet),
we proceed with a fine-tuning strategy for our 3D shape classification. This is
meaningful as our feature is analogous to k channel images (instead of 3 for real
images). Since the networks trained on images meaningfully capture the image
details at various levels, we expect them to provide good results when fine-tuned
on ‘image like’ inputs.

Initialization strategy The weights from a network trained on 2D images
can be used to initialize our corresponding network for fine-tuning, except for
the first layer where the number of input channels (with k = 5), and hence
the weights of the convolutional layer, do not match. In this case, we can ei-
ther initialize the first layer randomly (and proceed through fine-tuning with
other layers properly initialized from a pre-trained network), or copy part of the
weights for the first layer. We copy the weights of image-based network to the
1st, 3rd and 5th channel of the weights in the network for MLH. For the remain-
ing 2 layers, we use the average of the weights of the 3 channels of image-based
network and copy them to that of MLH network. This initialization strategy
provides us with an improvement of approximately 0.1% in test accuracy (over
randomly initialized first layer) in all the experiments with ModelNet40/10.
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4 Multi-view architecture

The MLH representation is a view dependent descriptor, and thus a well designed
network for a problem should consider features computed from multiple views.
We therefore need a good strategy for choosing views, and a technique to merge
information coming from different views to have a single descriptor. This section
discusses the design choices.

4.1 Choice view directions

Having MLH computed from the three canonical directions X, Y and Z of the
shape, enables all the surfaces to have atleast one direction not perpendicular
to them. When the 3D data is not axes aligned, we just use the three canonical
axes as view direction and proceed through MVCNN [28] like architecture to
combine the three views.

4.2 View merging requirements for aligned data

Aligned data Most of the online repositories and online databases for 3D shapes
(ShapeNet, ModelNet etc.) provide axes aligned shapes. Eg - for a car, the grav-
ity direction is always Z, front as Y and the side as X in ModelNet/ShapeNet
dataset. This important meta-information has been exploited successfully for
various tasks implicitly or explicitly [25,24,8,27]. In the availability of such
aligned data, our MLH features from X, Y and Z directions have more spe-
cific meaning. We design a multi-view architecture specifically to exploit this
information. Note that if shape-aware axes can be selected in the context of
other datasets e.g, through medial axis computation, it is possible to adapt our
method accordingly, by choosing them as view directions.

MVCNN Merging information coming from different views is addressed in
MVCNN [28], which has been the state-of-the-art method for shape classification
for a long time. We first explain MVCNN, and discuss its merits and demerits
before proposing our own solution for merging different views.

In MVCNN, a given shape is first rendered from several consistent directions,
which forms the input to the task specific CNN. Each rendered image is passed
through a CNN branch separately. All the branches in this part of the network
share the same parameters. For merging the outputs from different branches,
an element-wise maximum operation across the different activation volume is
taken. This is followed by the second part of the network which consists of Fully
Connected (FC) layers followed by a loss layer for training. Key elements of
this design are 1) shared weights for all the branches, and 2) element-wise max
pooling for merging the output from different views. Given the nature of the
problem, we identify the following disadvantages in this design.

1. The element-wise max merging operation makes the network give more im-
portance to one of the input views, and discard the information of the others.
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Fig. 2: Overview of the view-merging operation in our Multi-view architecture.

2. The element-wise max commutative operation makes the merged output
agnostic to the order of the input views, which is not justified except for
random view directions.

3. Weight sharing in the branches makes the network give less importance to
the semantics of the views. The network gets updated in the same way among
all the views even with different semantics of input to them.

Presence of aligned 3D datasets makes it important to process different views
separately, and explicitly differentiate the output coming from different views.

Network design formulation Our multiview network takes input (X1, ..., XN )
coming from N different views. Each of them gets passed through N CNN
branches (c1, ..., cN ), giving the output (B1, ..., BN ) = (c1(X1), ..., cN (XN )). We
then perform a merging operation f on the outputs of the branches to get the
final output f(B1, ..., BN ). This is followed by fully connected (FC) layers and
eventually by a loss function during the training. Based on analysis on MVCNN,
we have the following design choices in our network.

1. Independent view branches The network branch for each view should be
independent of each other. i.e., the CNN branches ci() have different weights.

2. Non-commutative merging operation To explicitly differentiate the
merged output before the application of the FC layers, we use a non-commutative
merge operation. i.e., the function f : Bn →M is non-commutative.

4.3 Multi-View classification network for MLH descriptors

Our Multi-view network takes 3 MLH feature descriptors as input from X, Y and
Z directions. The CNN branches cis are simple feed forward 2D convolutional
networks. We use one of the popular 2D CNN architectures trained on ImageNet,
as we can use the trained weights to initialize our model. As mentioned above,
the 3 branches do not share weights.
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Choice of non-commutative operation Popular merging operations like
max, mean and sum are all commutative, which makes the order of input irrele-
vant. The operation concatenation is non-commutative, but produces a large size
of activation volume making it infeasible to add a subsequent FC layer (Eg. con-
catenating the activation of the last Conv/Pool layer of VGG16 from 3 branches
and adding a FC layer result to 3*7*7*512*4096 ≈ 300M parameters).

We chose the operation - convolution followed by concatenation as our choice
of non-commutative operation. This reduces the size of the concatenated output
back to the initial amount and enables adding a subsequent FC layer to the
network. Specifically, we concatenate the activation volumes of the 3 branches
with dimension D×W×H along the axis of depth, to get a concatenated volume
of 3D×W ×H. We then apply 3×3 convolution with D filters to get the volume
back to D ×W ×H before applying the subsequent FC layer. These trainable
weights of the convolution filters along the entire concatenated volume make
the operation non-commutative. However, the network can learn to make these
weights non-commutative or commutative based on the type of input during
learning. The design is illustrated in Figure 2.

5 Experiments

5.1 General settings for shape classification

Dataset We use the popular datasets of ModelNet40 and ModelNet10 in [32] for
evaluating our shape classification results. ModelNet40 contains approximately
12k shapes from 40 categories, whereas ModelNet10, a subset of ModelNet40,
contains approximately 5k different shapes. These datasets come with their train-
ing and testing splits (≈ 10k and 2.5k shapes for ModelNet40; 4k and 1k for
ModelNet10). We computed MLH feature descriptors of dimension 256×256×5
and performed no data augmentation.
General Network settings We use the VGG16 with batch normalization[26]
(without the FC layers) as our base model for both single view and 3 view merged
network. More recent networks such as ResNet50 [7] and Inception based models
[30], provided no improvement in results in terms of test classification accuracy,
possibily due to the less number of training samples in these 3D shape datasets.
These deeper network architectures may provide advantage as the 3D datasets
become larger in size. We add a cross entropy loss at the end of the last FC layer
and do an end-to-end training for classification.
General training settings We train ournetwork for 20 epochs with a batch size
of 8 using SGD optimizer. The initial learning rate is set to 0.01 and is decreased
by a factor of 10 after 10 epochs. Our 3 view network takes approximately 2 hours
to converge with a GeForce GTX 1080 Ti GPU.

5.2 Evaluation of design choices

We compute 5 layers (k = 5) MLH feature, and train single view one branch
CNNs. We post the test classification accuracy for ModelNet40 in Table 1 (Left).
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View axis Accuracy

X 86.91
Y 86.71
Z 86.91

Merge settings Accuracy

a) Shared branches + max merge 91.25
b) Independent branches + max merge 91.29
c) Independent branches + cat merge 93.11

Table 1: Classification accuracy on ModelNet40 with (Left) single view, and
(Right) multiple views with different merge techniques. ‘cat merge’ denotes our
non commutative merge operation - concatenation followed by convolution.

Except for the experiments with the number of layers in Section 5.2, all the
experiments provided in this section use k = 5. Even with single view and a
very simple network architecture, our classification accuracy is comparable to
the popular voxel based methods. The next section provides a more detailed
comparison with the state-of-the-art methods.

View merging We consider the 3 canonical axes of X, Y and Z as the 3 or-
thogonal view directions, and perform experiments with the following branch
merging operations a) MVCNN type [28,17] network with shared CNN branch
followed by elt max b) independent branch followed by elt max c) our design of
independent branch with non-commutative merge - concatenation followed by
convolution. In the last design we concatenated 512 × 8 × 8 output volume of
the last convolution layers of 3 VGG16 branches to get an output volume of
1536×8×8. We follow this with 3×3 convolution with 512 filters (#parameters
= (1536*3*3)*512) to get the output volume back to the order of previous mag-
nitude - 512×7×7 (we reduce the dimension from 8 to 7 to properly initialize the
pretrained FC layer). This operation is detailed in Section 4.3. The classification
accuracy on ModelNet40 with the above design choices is reported in Table 1
(Right). The best result is obtained with our proposed merging technique.

Effect of fine-tuning One of the important features of our MLH descriptor is
the fact that, even though it is a geometry based descriptor which captures geo-
metric properties of a 3D shape, it can be easily used by pretrained image based
2D CNNs. All of our results, except otherwise stated are obtained by fine-tuning
the weights of the VGG16 pretrained on ImageNet with an initialization strategy
explained in Section 3.2. Finetuning makes a big difference in the result in the
test accuracy. For example, our 5-layer 3-view model achieves a test accuracy of
89.63 when initialized with random weights compared to 93.11 when initialized
with pretrained weights, giving an relative improvement of 3.5%.

Number of layers Figure 3 shows the effect of the number of layers in our
multilayer representation. Here we use our merged 3-view models . Note that
even with a single layer we achieve an accuracy higher than 90.5% due to our
new merging technique. Our 2 layer MLH descriptor already provides a good
representation of the shape as it completely covers the shape outline from outside
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Fig. 3: (Left) Classification accuracy on ModelNet40 with different of number of
layers. (Right) Confusion matrix of classification for ModelNet10.

along the view direction (by taking minimum and maximum height form the
grid). As expected, we see a big jump in accuracy from layer 1 to 2, followed
by a slow saturation till layer 5. We therefore, use the 5 layer descriptors in all
other experiments.

5.3 Comparison with the state-of-the-art methods

We provide a brief discussion on the different methods for shape classification
before providing our comparison; to better understand the state of the art and
the comparing methods.

Image-view based methods Image-view based methods take virtual snap-
shotsof the shape and then design a 2D CNN architecture to solve the task of
classification. They are, in their core, appearance based methods which are excel-
lent for solving tasks based on appearance - eg. shape classification and retrieval.
They are not generative in nature (being able to generate the shape or a partial
shape given the feature descriptors) and hence by design not appropriate for ge-
ometry based tasks such as shape generation, reconstruction, part segmentation
etc. Because of the fact that shape classes are highly appearance centric, they
contribute to the top part of the shape classification leaderboard.

Geometry based methods These methods use a geometry centric input,
such as voxel grid, point cloud etc. and design an appropriate CNN architecture
to solve the task of classification. They are geometry centric and can be used for
tasks such as shape generation, part segmentation etc.

Table 2 shows the comparison of our approach to the other state of the art
methods for shape classification. We perform the best compared to all the single
model methods in ModelNet10, and best among all the geometry based methods
in in ModelNet40. The confusion matrix for ModelNet10 is shown in Figure 3.
Most of the missclassification comes from the similar category pairs like (table,
desk) and (night stand, dresser). We also perform better than all the appearance
based methods, except Wang et al [27] which performs a specialized view based
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ModelNet40 ModelNet10 T converge # viewsa Data

(ModelNet40) # aug inst b aug

Image based
PANORAMA NN [25] 91.12 90.70 30 mins 1a N
Wang et al [27] 93.80 - 20 hours 12a N
Pairwise [8] 90.70 92.80 - 12a N
MVCNN [28] 90.10 - - 80a N

Geometry based

Kd-Net depth 10 [9] 90.60 93.30 5 days 10b Y

Kd-Net depth 15 [9] 91.80 94.00 16 hours 10b Y
MVCNN- MultiRes [17] 91.40 - - 20a Y

VRN [2] 91.33 93.61 6 days 24b Y

Voxception [2] 90.56 93.28 6 days 24b Y
ORION [24] - 93.80 - - Y

Pointnet [16] 89.20 - - 1b Y

VoxNet [14] 83.00 - - 12b Y
Ours - 3 views + cat 93.11 94.80 2 hours 3a N

Table 2: Comparison of test classification accuracy on ModelNet40 and Mod-
elNet10 dataset among all single model methods. Bold figures are the highest
accuracy in the respective group. Underscore figure is the highest accuracy value
among all the methods. - means information not available. T converge denotes
the Time taken for the CNN to Converge in a single GPU. Y/N means yes and
no respectively.

clustering for the task of classification and takes 10 times longer to converge than
our algorithm. It can be argued that the result of our method can be improved
with more view based specialization, data augmentation and other fine-grained
analysis (Eg clustering of MLH features instead of rendered images) which is not
our contribution or our claim.

5.4 Relation with other descriptors

Reduction to image based models As described in Section 3.1, our repre-
sentation with 1 layer reduces to rendered image with orthogonal projection. We
perform experiments with k = 1 with similar merging setting as MVCNN and
provide our results in Table 3. The similarity of our results verifies this hypothe-
sis. A slightly less accuracy of our method with 1 layer and the merge settings of
MVCNN is probably due to the less number of views (3 compared to 80). We see
an increase in accuracy with our new merging method with 1 layer descriptors.
This provides the hint that our merging method can be used by existing image
based methods such as MVCNN to improve the classification accuracy.

Comparison to Voxel based models We compare classification accuracy
and memory requirements for our single view (X), 5 layer model with the results
provided in OctNet paper [20] on the ModelNet10 dataset. We chose to com-
pare our results with this work because, a) it focuses on ‘pure’ 3D convolutional
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Algorithms Accuracy
ModelNet40

MVCNN [28] (80 v) 90.10
1 l + Shared + max (3 v) 89.78

1 l + Ind + max (3 v) 90.15
1 l + Ind + cat (3 v) 90.72

Algorithms Accuracy Approx.
ModelNet10 Memory

Octnet 256 [20] 90.3 8 GB ∗

DenseNet 64 [20] 90.0 6 GB †

DenseNet 256 [20] - 60 GB

Ours 256 (1 view) 90.97 8 GB ‡

Table 3: (Left) Classification accuracy on ModelNet40 with our 1 layered descrip-
tor with 3 views and its comparison with an image based method. See Table 1
for the legends. (Right) Comparison of classification accuracy and memory re-
quirement (of batchsize = 32) of our single view model with OctNet [20].

network on voxel representation b) it isolates the effect of memory requirement
on accuracy from other network design factors. On a similar note, we perform
classification using a single view network using VGG16 (a simple 2D convolu-
tional network of 16 layers - in comparison with 14 layers 3D Convnet used in
OctNet256) for our MLH descriptors of dimension 256 × 256 × 5. As seen in
Table 3 (Right), the result of our method using a single view is comparable to
pure 3D convolution based methods on 3D voxel grid and OctNet, while being
similar in the network memory requirements of OctNet.

5.5 Multi-view GAN on MLH descriptors

In this set of experiments, we use the MLH features as generative feature de-
scriptors and show that they can be applied for point cloud generation, using a
DCGAN type network. We also provide a novel multi-view GAN which generates
multiple views simultaneously and synchronously. We show qualitative results
of the rendered point cloud of the generated shapes. Our main intention here is
to verify the fact that the 2D grid of MLH descriptors (and the corresponding
2D CNNs) have sufficient geometric information and hold promise towards the
application of 3D shape generation.

We design a generative network which automatically takes care of the syn-
chronization of multiple views by using a multiview discriminator with our merg-
ing technique. The generator takes a latent noise as input and feeds it to 3 dif-
ferent generating branches consisting of transposed convolutions. None of the
generating branches share any weights. The design of generator not sharing any
weights and a multi-view discriminator with non commutative merge operation
is even more important in the context of GAN than for a simple classification

∗Memory occupied in GeForce GTX 1080 Ti for a batchsize of 32 and approximate
value inferred from the Figure 7 (a) in [20].
†Activation volume of the network in Table 5 for the batchsize of 32 and approxi-

mate value inferred from the Figure 7(a) [20] (details in supplementary material).
‡Activation volume of our single view network (details in supplementary material)

and memory occupied in GeForce GTX 1080 Ti for a batchsize of 32.
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Fig. 4: MVDCGAN - Multiview DCGAN for MLH descriptors. (Top) The gen-
erator and discriminator architecture used in the experiments. (Bottom) Gener-
ated shapes of 3 chairs and 2 cars using the above architecture. (Bottom-Right)
Visualization of the generated descriptors for one of the chair.

network. This is because in GAN, the generator has to produce 3 different out-
put as different views, and the discriminator has to discriminate and differentiate
among the views.

For generative network branches, we use 5 transposed-convolution blocks to
upsample. For discriminator branches, we used 5 convolution blocks to down-
sample. The network details are provided in the supplementary material. We
used 2 layered representation to capture the shape outline from outside. The
Multiview DCGAN model together with the generated shapes are shown in Fig-
ure 4. We see that the generated 3D shapes show characteristic 3D features. In
future work, they can be explored towards shape synthesis applications.

6 Conclusion and future work

In this paper, we introduced a novel 3D shape descriptor for 2D convolutional
neural networks and an efficient merging technique for merging information from
different views of same instance. We showed its advantages in terms of classi-
fication accuracy and memory requirements, as compared to the voxel based
methods. Our method is complementary to fine-grained analysis such as view
clustering (Eg. [27]) and making ensembles of classifiers, for further improving
the classification accuracy. Our merging can also be used in various existing
work involving merging of aligned data instances (Eg. [17,28]). We also plan to
perform detailed work on MV-DCGAN, both using images and MLH descrip-
tors. We hope our MLH descriptors will provide an alternative way of 3D shape
processing in the future and encourage researchers to investigate in novel 2D
CNNs for solving tasks related to 3D data.
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A Introduction

In this short document, we provide the supplementary information for the pa-
per ‘Learning 3D Shapes as Multi-Layered Height-maps using 2D Convolutional
Networks’ - referred as Main Paper.

B Feature visualization

Figure 5 shows the visualization of the features of a few shapes.

C Memory calculation

Table 4 and 5 provide the calculation of the memory in different networks, whose
values are used in Table 3 (Right), Main paper.

D ModelNet40 misclassified shapes

Table 7 shows some of the misclassified shapes for the ModelNet40 dataset.

E Network for Multi-View DCGAN

Table 6 shows the detailed network architecture used in the experiments with
MV-DCGAN (Section 5.5, Main paper).
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Fig. 5: Visualization of the multi-layered height-map descriptors of a few shapes.
Each row represents a view direction (Z, X and Y in the order). Each column
represent a layer (starting from 1 to 5). Note the distinctive features captured
by the different layers - specially by the 1st and 5th layer. Eg, in the Z view of
the car, tyres are captured by the 1st layer, hood and the roof by the 5th layer,
while the seats and interiors like seats are captured by the intermediate layers.
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Network Architecture Activation olume Volume size Memory

input 256x256x256x1 16777216 67108864

conv(1, 8) 256x256x256x8 134217728 536870912
conv(8, 14) 256x256x256x14 234881024 939524096
maxpool(2) 128x128x128x14 29360128 117440512

conv(14, 14) 128x128x128x14 29360128 117440512
conv(14, 20) 128x128x128x20 41943040 167772160
maxpool(2) 64x64x64x20 5242880 20971520

conv(20, 20) 64x64x64x20 5242880 20971520
conv(20, 26) 64x64x64x26 6815744 27262976
maxpool(2) 32x32x32x26 851968 3407872

conv(26, 26) 32x32x32x26 851968 3407872
conv(26, 32) 32x32x32x32 1048576 4194304
maxpool(2) 16x16x16x32 131072 524288

conv(32, 32) 16x16x16x32 131072 524288
conv(32, 32) 16x16x16x32 131072 524288
maxpool(2) 8x8x8x32 16384 65536

Total 507002880 2028011520
≈ 1.89 GB

Table 4: Memory computation for DenseNet256[20] for one sample. For a batch
size of 32 we get 32*1.8 ≈ 60GB of memory (Table 3, Main Paper). This value
is also verified against the values in the plot provided in Figure 7(a) [20]
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Network Architecture Activation Volume Volume size Memory

input 256x256x5 327680 1310725

conv(5,64) 256x256x64 4194304 16777221
conv(64,64) 256x256x64 4194304 16777221
maxpool(2) 128x128x64 1048576 4194309

conv(64,128) 128x128x128 2097152 8388613
conv(128,128) 128x128x128 2097152 8388613
maxpool(2) 64x64x128 524288 2097157

conv(128,256) 64x64x256 1048576 4194309
conv(256,256) 64x64x256 1048576 4194309
conv(256,256) 64x64x256 1048576 4194309
maxpool(2) 32x32x256 262144 1048581

conv(256,512) 32x32x512 524288 2097157
conv(512,512) 32x32x512 524288 2097157
conv(512,512) 32x32x512 524288 2097157
maxpool(2) 16x16x512 131072 524293

conv(512,512) 16x16x512 131072 524293
conv(512,512) 16x16x512 131072 524293
conv(512,512) 16x16x512 131072 524293
maxpool(2) 8x8x512 32768 131077

Total (branch) 80084992 ≈ 80 MB

FC1 1x1x4096 4096 16389

FC2 1x1x4096 4096 16389

FC3 1x1x40 40 165

Total ≈ 112 MB.

Table 5: Memory computation for Our single view net using VGG for one sample.
For a batch size of 32 we get 32*112 ≈ 3.5GB of memory. But our experiments
which was run using a PyTorch implementation for a batchsize of 32 occupies
8 GB of data in GeForce GTX 1080 Ti. We used this relaxed value of 8GB in
Table 3 (Right), Main Paper for a more fare comparison against OctNet[20].
For OctNet we used the memory consumed in a similar settings using their
representation and varified its value in the plot provided in the Figure 7(a) of
[20].
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input - 100x1

convT(4x4, 512)
ReLU

convT(4x4, 256, (2,2))
ReLU

convT(4x4, 128, (2,2))
ReLU

convT(4x4, 64, (2,2))
ReLU

convT(4x4, 5, (2,2))
Tanh

output - 64x64x5

input - 64x64x5

conv(4x4, 64, (2,2))
LReLU(0.2)

conv(4x4, 128, (2,2))
LReLU(0.2)

conv(4x4, 256, (2,2))
LReLU(0.2)

conv(4x4, 512, (2,2))

output - 8x8x512

Table 6: (Left) The generative branch of the Multiview DCGAN which produces
MLH vector of size 64x64x5. (Right) The discriminator part of the MV DCGAN
which takes the generated 64x64x5 input and produces an activation volume of
8*8*512. In the multiview design we have 3 independent generator branches and
3 independent discriminator branches. The 3 output volume of the discriminator
of the discriminator is concatenated by a non-commutative operation followed
by FC(1024) and FC(1). More details are in Figure 4, Main paper. The numbers
in the bracket (x,x) denote the stride values for the strided convolution and
transposed convolution blocks. Batch-normalization is used between every layers
except for the first and the last layers.
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GT label Predicted label Misclassified Sample from
shape predicted label

plant flower pot

vase cup pot

desk table

night stand dresser

table desk

Table 7: Example of misclassified shape and a close looking sample from its
predicted label in ModelNet40.
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