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Abstract. Depth estimation from a single image is a fundamental problem in
computer vision. In this paper, we propose a simple yet effective convolutional
spatial propagation network (CSPN) to learn the affinity matrix for depth predic-
tion. Specifically, we adopt an efficient linear propagation model, where the prop-
agation is performed with a manner of recurrent convolutional operation, and the
affinity among neighboring pixels is learned through a deep convolutional neural
network (CNN). We apply the designed CSPN to two depth estimation tasks given
a single image: (1) Refine the depth output from existing state-of-the-art (SOTA)
methods; (2) Convert sparse depth samples to a dense depth map by embedding
the depth samples within the propagation procedure. The second task is inspired
by the availability of LiDAR that provides sparse but accurate depth measure-
ments. We experimented the proposed CSPN over the popular NYU v2 [1] and
KITTI [2] datasets, where we show that our proposed approach improves not only
quality (e.g., 30% more reduction in depth error), but also speed (e.g., 2 to 5×
faster) of depth maps than previous SOTA methods.
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1 Introduction

Depth estimation from a single image, i.e., predicting per-pixel distance to the camera,
has many applications from augmented realities (AR), autonomous driving, to robotics.
Given a single image, recent efforts to estimate per-pixel depths have yielded high-
quality outputs by taking advantage of deep fully convolutional neural networks [3,4]
and large amount of training data from indoor [1,5,6] and outdoor [2,7,8]. The improve-
ment lies mostly in more accurate estimation of global scene layout and scales with
advanced networks, such as VGG [9] and ResNet [10], and better local structure recov-
ery through deconvolution operation [11], skip-connections [12] or up-projection [4].
Nevertheless, upon closer inspection of the output from a contemporary approach [13]
(Fig. 1(b)), the predicted depths is still blurry and do not align well with the given image
structure such as object silhouette.

Most recently, Liu et al. [14] propose to directly learn the image-dependent affinity
through a deep CNN with spatial propagation networks (SPN), yielding better results
comparing to the manually designed affinity on image segmentation. However, its prop-
agation is performed in a scan-line or scan-column fashion, which is serial in nature.
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Fig. 1: (a) Input image; (b) Depth from [13]; (c) Depth after bilateral filtering; (d) Re-
fined depth by SPN [14]; (e) Refined depth by CSPN; (f) Sparse depth samples (500);
(g) Ground Truth; (h) Depth from our network; (i) Refined depth by SPN with depth
sample; (j) Refined depth by CSPN with depth sample. The corresponding root mean
square error (RMSE) is put at the left-top of each predicted depth map.

For instance, when propagating left-to-right, pixels at right-most column must wait the
information from the left-most column to update its value. Intuitively, depth refinement
commonly just needs a local context rather a global one.

Here we propose convolutional spatial propagation networks (CSPN), where the
depths at all pixels are updated simultaneously within a local convolutional context.
The long range context is obtained through a recurrent operation. Fig. 1 shows an ex-
ample, the depth estimated from CSPN (e) is more accurate than that from SPN (d) and
Bilateral filtering (c). In our experiments, our parallel update scheme leads to significant
performance improvement in both speed and quality over the serial ones such as SPN.

Practically, we show that the proposed strategy can also be easily extended to con-
vert sparse depth samples to a dense depth map given corresponding image [15,13]. This
task can be widely applied in robotics and autonomous cars, where depth perception is
often acquired through LiDAR, which usually generates sparse but accurate depth mea-
surement. By combining the sparse measurements with images, we could generate a
full-frame dense depth map. For this task, we consider three important requirements
for an algorithm: (1) The dense depth map recovered should align with image struc-
tures; (2) The depth value from the sparse samples should be preserved, since they are
usually from a reliable sensor; (3) The transition between sparse depth samples and
their neighboring depths should be smooth and unnoticeable. In order to satisfy those
requirements, we first add mirror connections based on the network from [13], which
generates better depths as shown in Fig. 1(h). Then, we tried to embed the propagation
into SPN in order to keep the depth value at sparse points. As shown in Fig. 1(i), it gen-
erates better details and lower error than SPN without depth samples (Fig. 1(d)). Finally,
changing SPN to our CSPN yields the best result (Fig. 1(j)). As can be seen, our recov-
ered depth map with just 500 depth samples produces much more accurately estimated
scene layouts and scales. We experiment our approach over two popular benchmarks
for depth estimation, i.e.NYU v2 [1] and KITTI [2], with standard evaluation crite-
ria. In both datasets, our approach is significantly better (relative 30% improvement
in most key measurements) than previous deep learning based state-of-the-art (SOTA)
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algorithms [15,13]. More importantly, it is very efficient yielding 2-5× acceleration
comparing with SPN. In summary, this paper has the following contributions:

1. We propose convolutional spatial propagation networks (CSPN) which is more ef-
ficient and accurate for depth estimation than the previous SOTA propagation strat-
egy [14], without sacrificing the theoretical guarantee.

2. We extend CSPN to the task of converting sparse depth samples to dense depth map
by using the provided sparse depths into the propagation process. It guarantees that
the sparse input depth values are preserved in the final depth map. It runs in real-
time, which is well suited for robotics and autonomous driving applications, where
sparse depth measurement from LiDAR can be fused with image data.

2 Related Work

Depth estimating and enhancement/refinement have long been center problems for com-
puter vision and robotics. Here we summarize those works in several aspects without
enumerating them all due to space limitation.
Single view depth estimation via CNN and CRF. Deep neural networks (DCN) devel-
oped in recent years provide strong feature representation for per-pixel depth estimation
from a single image. Numerous algorithms are developed through supervised meth-
ods [16,3,4,17], semi-supervised methods [18] or unsupervised methods [19,20,21,22].
and add in skip and mirror connections. Others tried to improve the estimated de-
tails further by appending a conditional random field (CRF) [23,24,25] and joint train-
ing [26,27]. However, the affinity for measuring the coherence of neighboring pixels is
manually designed.
Depth Enhancement. Traditionally, depth output can be also efficiently enhanced with
explicitly designed affinity through image filtering [28,29], or data-driven ones through
total variation (TV) [30,31] and learning to diffuse [32] by incorporating more priors
into diffusion partial differential equations (PDEs). However, due to the lack of an ef-
fective learning strategy, they are limited for large-scale complex visual enhancement.

Recently, deep learning based enhancement yields impressive results on super res-
olution of both images [33,34] and depths [35,36,37,38]. The network takes low reso-
lution inputs and output the high-resolution results, and is trained end-to-end where the
mapping between input and output is implicitly learned. However, these methods are
only trained and experimented with perfect correspondent ground-truth low-resolution
and high-resolution depth maps and often a black-box model. In our scenario, both the
input and ground truth depth are non-perfect, e.g.depths from a low cost LiDAR or a
network, thus an explicit diffusion process to guide the enhancement such as SPN is
necessary.
Learning affinity for spatial diffusion. Learning affinity matrix with deep CNN for
diffusion or spatial propagation receives high interests in recent years due to its theoret-
ical supports and guarantees [39]. Maire et al. [40] trained a deep CNN to directly pre-
dict the entities of an affinity matrix, which demonstrated good performance on image
segmentation. However, the affinity is followed by an independent non-differentiable
solver of spectral embedding, it can not be supervised end-to-end for the prediction
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(a)SPN (b)CSPN

Fig. 2: Comparison between the propagation process in SPN [14] and CPSN in this
work.

task. Bertasius et al. [41] introduced a random walk network that optimizes the objec-
tives of pixel-wise affinity for semantic segmentation. Nevertheless, their affinity matrix
needs additional supervision from ground-truth sparse pixel pairs, which limits the po-
tential connections between pixels. Chen et al. [42] try to explicit model an edge map
for domain transform to improve the output of neural network.

The most related work with our approach is SPN [14], where the learning of a large
affinity matrix for diffusion is converted to learning a local linear spatial propagation,
yielding a simple while effective approach for output enhancement. However, as men-
tioned in Sec. 1, depth enhancement commonly needs local context, it might not be
necessary to update a pixel by scanning the whole image. As shown in our experiments,
our proposed CSPN is more efficient and provides much better results.
Depth estimation with given sparse samples. The task of sparse depth to dense depth
estimation was introduced in robotics due to its wide application for enhancing 3D
perception [15]. Different from depth enhancement, the provided depths are usually
from low-cost LiDAR or one line laser sensors, yielding a map with valid depth in only
few hundreds of pixels, as illustrated in Fig. 1(f). Most recently, Ma et al. [13] propose
to treat sparse depth map as additional input to a ResNet [4] based depth predictor,
producing superior results than the depth output from CNN with solely image input.
However, the output results are still blurry, and does not satisfy our requirements of
depth as discussed in Sec. 1. In our case, we directly embed the sampled depth in the
diffusion process, where all the requirements are held and guaranteed.

Some other works directly convert sparse 3D points to dense ones without image
input [43,44,45], whereas the density of sparse points must be high enough to reveal the
scene structure, which is not available in our scenario.

3 Our Approach

We formulate the problem as an anisotropic diffusion process and the diffusion tensor is
learned through a deep CNN directly from the given image, which guides the refinement
of the output.
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3.1 Convolutional Spatial Propagation Network

Given a depth map Do ∈ Rm×n that is output from a network, and image X ∈ Rm×n,
our task is to update the depth map to a new depth map Dn within N iteration steps,
which first reveals more details of the image, and second improves the per-pixel depth
estimation results.

Fig. 2(b) illustrates our updating operation. Formally, without loss of generality, we
can embed the Do to some hidden space H ∈ Rm×n×c. The convolutional transforma-
tion functional with a kernel size of k for each time step t could be written as,

Hi,j,t+1 =
∑(k−1)/2

a,b=−(k−1)/2
κi,j(a, b)�Hi−a,j−b,t

where, κi,j(a, b) =
κ̂i,j(a, b)∑

a,b,a,b6=0 |κ̂i,j(a, b)|
,

κi,j(0, 0) = 1−
∑

a,b,a,b6=0
κi,j(a, b) (1)

where the transformation kernel κ̂i,j ∈ Rk×k×c is the output from an affinity network,
which is spatially dependent on the input image. The kernel size k is usually set as an
odd number so that the computational context surrounding pixel (i, j) is symmetric. �
is element-wise product. Following [14], we normalize kernel weights between range
of (−1, 1) so that the model can be stabilized and converged by satisfying the condi-
tion

∑
a,b,a,b6=0 |κi,j(a, b)| ≤ 1. Finally, we perform this iteration N steps to reach a

stationary distribution.
Correspondence to diffusion process with a partial differential equation (PDE).
Similar with [14], here we show that our CSPN holds all the desired properties of SPN.
Formally, we can rewrite the propagation in Eq. (1) as a process of diffusion evolution
by first doing column-first vectorization of feature map H to Hv ∈ Rmn×c.

Ht+1
v =


1− λ0,0 κ0,0(1, 0) · · · 0
κ1,0(−1, 0) 1− λ1,0 · · · 0

...
...

. . .
...

... · · · · · · 1− λm,n

 = GHt
v (2)

where λi,j =
∑
a,b κi,j(a, b) and G is a mn×mn transformation matrix. The diffusion

process expressed with a partial differential equation (PDE) is derived as follows,

Ht+1
v = GHt

v = (I−D+A)Ht
v

Ht+1
v −Ht

v = −(D−A)Ht
v

∂tH
t+1
v = −LHt

v (3)

where L is the Laplacian matrix, D is the diagonal matrix containing all the λi,j , and
A is the affinity matrix which is the off diagonal part of G.

In our formulation, different from [14] which scans the whole image in four direc-
tions (Fig. 2(a)) sequentially, CSPN propagates a local area towards all directions at
each step (Fig. 2(b)) simultaneously, i.e.with k×k local context, while larger context is
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Fig. 3: (a) Histogram of RMSE with depth maps from [13] at given sparse depth points.
(b) Comparison of gradient error between depth maps with sparse depth replacement
(blue bars) and with ours CSPN (green bars), where ours is much smaller. Check Fig. 4
for an example. Vertical axis shows the count of pixels.

observed when recurrent processing is performed, and the context acquiring rate is in
an order of O(kN).

In practical, we choose to use convolutional operation due to that it can be effi-
ciently implemented through image vectorization, yielding real-time performance in
depth refinement tasks.

Principally, CSPN could also be derived from loopy belief propagation with sum-
product algorithm [46]. However, since our approach adopts linear propagation, which
is efficient while just a special case of pairwise potential with L2 reconstruction loss in
graphical models. Therefore, to make it more accurate, we call our strategy convolu-
tional spatial propagation in the field of diffusion process.

3.2 Spatial Propagation with Sparse Depth Samples

In this application, we have an additional sparse depth map Ds (Fig. 4(b)) to help es-
timate a depth depth map from a RGB image. Specifically, a sparse set of pixels are
set with real depth values from some depth sensors, which can be used to guide our
propagation process.

Similarly, we also embed the sparse depth map Ds = {dsi,j} to a hidden representa-
tion Hs, and we can write the updating equation of H by simply adding a replacement
step after performing Eq. (1),

Hi,j,t+1 = (1−mi,j)Hi,j,t+1 +mi,jH
s
i,j (4)

where mi,j = I(dsi,j > 0) is an indicator for the availability of sparse depth at (i, j).
In this way, we guarantee that our refined depths have the exact same value at those

valid pixels in sparse depth map. Additionally, we propagate the information from those
sparse depth to its surrounding pixels such that the smoothness between the sparse
depths and their neighbors are maintained. Thirdly, thanks to the diffusion process, the
final depth map is well aligned with image structures. This fully satisfies the desired
three properties for this task which is discussed in our introduction (1).
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(a)

(b)

(c)

(d)

Depth Sobel_x

Fig. 4: Comparison of depth map [13] with sparse depth replacement and with our
CSPN w.r.t. smoothness of depth gradient at sparse depth points. (a) Input image. (b)
Sparse depth points. (c) Depth map with sparse depth replacement. (d) Depth map with
our CSPN with sparse depth points. We highlight the differences in the red box.

In addition, this process is still following the diffusion process with PDE, where the
transformation matrix can be built by simply replacing the rows satisfying mi,j = 1 in
G (Eq. (2)), which are corresponding to sparse depth samples, by eTi+j∗m. Here ei+j∗m
is an unit vector with the value at i+ j ∗m as 1. Therefore, the summation of each row
is still 1, and obviously the stabilization still holds in this case.

Our strategy has several advantages over the previous state-of-the-art sparse-to-
dense methods [13,15]. In Fig. 3(a), we plot a histogram of depth displacement from
ground truth at given sparse depth pixels from the output of Ma et al. [13]. It shows the
accuracy of sparse depth points cannot preserved, and some pixels could have very large
displacement (0.2m), indicating that directly training a CNN for depth prediction does
not preserve the value of real sparse depths provided. To acquire such property, one may
simply replace the depths from the outputs with provided sparse depths at those pixels,
however, it yields non-smooth depth gradient w.r.t. surrounding pixels. In Fig. 4(c), we
plot such an example, at right of the figure, we compute Sobel gradient [47] of the depth
map along x direction, where we can clearly see that the gradients surrounding pixels
with replaced depth values are non-smooth. We statistically verify this in Fig. 3(b) using
500 sparse samples, the blue bars are the histogram of gradient error at sparse pixels by
comparing the gradient of the depth map with sparse depth replacement and of ground
truth depth map. We can see the difference is significant, 2/3 of the sparse pixels has
large gradient error. Our method, on the other hand, as shown with the green bars in
Fig. 3(b), the average gradient error is much smaller, and most pixels have zero error.
InFig. 4(d), we show the depth gradients surrounding sparse pixels are smooth and close
to ground truth, demonstrating the effectiveness of our propagation scheme.

3.3 Complexity Analysis

As formulated in Eq. (1), our CSPN takes the operation of convolution, where the com-
plexity of using CUDA with GPU for one step CSPN is O(log2(k

2)), where k is the
kernel size. This is because CUDA uses parallel sum reduction, which has logarithmic
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Fig. 5: Architecture of our networks with mirror connections for depth estimation via
transformation kernel prediction with CSPN (best view in color). Sparse depth is an
optional input, which can be embedded into the CSPN to guide the depth refinement.

complexity. In addition, convolution operation can be performed parallel for all pixels
and channels, which has a constant complexity of O(1). Therefore, performing N -step
propagation, the overall complexity for CSPN is O(log2(k

2)N), which is irrelevant to
image size (m,n).

SPN [14] adopts scanning row/column-wise propagation in four directions. Using
k-way connection and running in parallel, the complexity for one step is O(log2(k)).
The propagation needs to scan full image from one side to another, thus the complexity
for SPN is O(log2(k)(m + n)). Though this is already more efficient than the densely
connected CRF proposed by [48], whose implementation complexity with permuto-
hedral lattice is O(mnN), ours O(log2(k

2)N) is more efficient since the number of
iterations N is always much smaller than the size of image m,n. We show in our ex-
periments (Sec. 4), with k = 3 and N = 12, CSPN already outperforms SPN with
a large margin (relative 30%), demonstrating both efficiency and effectiveness of the
proposed approach.

3.4 End-to-End Architecture

We now explain our end-to-end network architecture to predict both the transformation
kernel and the depth value, which are the inputs to CSPN for depth refinement. As
shown in Fig. 5, our network has some similarity with that from Ma et al. [13], with the
final CSPN layer that outputs a dense depth map.

For predicting the transformation kernel κ in Eq. (1), rather than building a new
deep network for learning affinity same as Liu et al. [14], we branch an additional
output from the given network, which shares the same feature extractor with the depth
network. This helps us to save memory and time cost for joint learning of both depth
estimation and transformation kernels prediction.
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Learning of affinity is dependent on fine grained spatial details of the input image.
However, spatial information is weaken or lost with the down sampling operation dur-
ing the forward process of the ResNet in [4]. Thus, we add mirror connections similar
with the U-shape network [12] by directed concatenating the feature from encoder to
up-projection layers as illustrated by “UpProj_Cat” layer in Fig. 5. Notice that it is im-
portant to carefully select the end-point of mirror connections. Through experimenting
three possible positions to append the connection, i.e.after conv, after bn and after relu
as shown by the “UpProj” layer in Fig. 5 , we found the last position provides the best
results by validating with the NYU v2 dataset (Sec. 4.2). In doing so, we found not only
the depth output from the network is better recovered, and the results after the CSPN
is additionally refined, which we will show the experiment section (Sec. 4). Finally we
adopt the same training loss as [13], yielding an end-to-end learning system.

4 Experiments

In this section, we describe our implementation details, the datasets and evaluation met-
rics used in our experiments. Then present comprehensive evaluation of CSPN on both
depth refinement and sparse to dense tasks.
Implementation details. The weights of ResNet in the encoding layers for depth esti-
mation (Sec. 3.4) are initialized with models pretrained on the ImageNet dataset [49].
Our models are trained with SGD optimizer, and we use a small batch size of 24 and
train for 40 epochs for all the experiments, and the model performed best on the val-
idation set is used for testing. The learning rate starts at 0.01, and is reduced to 20%
every 10 epochs. A small weight decay of 10−4 is applied for regularization. We imple-
ment our networks based on PyTorch 1 platform, and use its element-wise product and
convolution operation for our one step CSPN implementation.

For depth, we show that propagation with hidden representation H only achieves
marginal improvement over doing propagation within the domain of depth D. There-
fore, we perform all our experiments direct with D rather than learning an additional
embedding layer. For sparse depth samples, we adopt 500 sparse samples as that is used
in [13].

4.1 Datasets and Metrics

All our experiments are evaluated on two datasets: NYU v2 [1] and KITTI [2], using
commonly used metrics.
NYU v2. The NYU-Depth-v2 dataset consists of RGB and depth images collected from
464 different indoor scenes. We use the official split of data, where 249 scenes are used
for training and we sample 50K images out of the training set with the same manner
as [13]. For testing, following the standard setting [3,27], the small labeled test set with
654 images is used the final performance. The original image of size 640×480 are
first downsampled to half and then center-cropped, producing a network input size of
304×228.

1 http://pytorch.org/
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(a) (b) (c)

Fig. 6: Ablation study.(a) RMSE (left axis, lower the better) and δ < 1.02 (right axis,
higher the better) of CSPN w.r.t. number of iterations. Horizontal lines show the corre-
sponding results from SPN [14]. (b) RMSE and δ < 1.02 of CSPN w.r.t. kernel size.
(c) Testing times w.r.t. input image size.

KITTI odometry dataset. It includes both camera and LiDAR measurements, and
consists of 22 sequences. Half of the sequence is used for training while the other half
is for evaluation. Following [13], we use all 46k images from the training sequences for
training, and a random subset of 3200 images from the test sequences for evaluation.
Specifically, we take the bottom part 912×228 due to no depth at the top area, and only
evaluate the pixels with ground truth.
Metrics. We adopt the same metrics and use their implementation in [13]. Given ground
truth depth D∗ = {d∗} and predicted depth D = {d}, the metrics include: (1) RMSE:√

1
|D|

∑
d∈D ||d∗ − d||2. (2) Abs Rel: 1

|D|
∑
d∈D |d∗ − d|/d∗. (3) δt: % of d ∈ D, s.t.

max(d
∗

d ,
d
d∗ ) < t, where t ∈ {1.25, 1.252, 1.253}. Nevertheless, for the third metric,

we found that the depth accuracy is very high when sparse depth is provided, t = 1.25
is already a very loosen criteria where almost 100% of pixels are judged as correct,
which can hardly distinguish different methods as shown in (Tab. 1). Thus we adopt
more strict criteria for correctness by choosing t ∈ {1.02, 1.05, 1.10}.

4.2 Parameter Tuning and Speed Study

We first evaluate various hyper-parameters including kernel size k, number of iterations
N in Eq. (1) using the NYU v2 dataset. Then we provide an empirical evaluation of the
running speed with a Titan X GPU on a computer with 16 GB memory.
Number of iterations. We adopt a kernel size of 3 to validate the effect of iteration
numberN in CSPN. As shown in Fig. 6(a), our CSPN has outperformed SPN [14] (hor-
izontal line) when iterated only four times. Also, we can get even better performance
when more iterations are applied in the model during training. From our experiments,
the accuracy is saturated when the number of iterations is increased to 24.
Size of convolutional kernel. As shown in Fig. 6(b), larger convolutional kernel has
similar effect with more iterations, due to larger context is considered for propagation
at each time step. Here, we hold the iteration number to N = 12, and we can see the
performance is better when k is larger while saturated at size of 7. We notice that the
performance drop slightly when kernel size is set to 9. This is because we use a fixed
number of epoch, i.e.40, for all the experiments, while larger kernel size induces more
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Table 1: Comparison results on NYU v2 dataset [1] between different variants of CSPN
and other state-of-the-art strategies. Here, “Preserve SD” is short for preserving the
depth value at sparse depth samples.

Method Preserve “SD” Lower the better Higher the better
RMSE REL δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Ma et al.[13] 0.230 0.044 52.3 82.3 92.6 97.1 99.4 99.8
+Bilateral [28] 0.479 0.084 29.9 58.0 77.3 92.4 97.6 98.9
+SPN [32] 0.172 0.031 61.1 84.9 93.5 98.3 99.7 99.9
+CSPN (Ours) 0.162 0.028 64.6 87.7 94.9 98.6 99.7 99.9
+UNet (Ours) 0.137 0.020 78.1 91.6 96.2 98.9 99.8 100.0

+ASAP [50] X 0.232 0.037 59.7 82.5 91.3 97.0 99.2 99.7
+Replacement X 0.168 0.032 56.5 85.7 94.4 98.4 99.7 99.8
+SPN [32] X 0.162 0.027 67.5 87.9 94.7 98.5 99.7 99.9
+UNet(Ours)+SPN X 0.144 0.022 75.4 90.8 95.8 98.8 99.8 100.0
+CSPN (Ours) X 0.136 0.021 76.2 91.2 96.2 99.0 99.8 100.0
+UNet+CSPN (Ours) X 0.117 0.016 83.2 93.4 97.1 99.2 99.9 100.0

affinity to learn in propagation, which needs more epoch of data to converge. Later,
when we train with more epochs, the model reaches similar performance with kernel
size of 7. Thus, we can see using kernel size of 7 with 12 iterations reaches similar
performance of using kernel size of 3 with 20 iterations, which shows CSPN has the
trade-off between kernel size and iterations. In practice, the two settings run with similar
speed, while the latter costs much less memory. Therefore, we adopt kernel size as 3
and number of iterations as 24 in our comparisons.

Concatenation end-point for mirror connection. As discussed in Sec. 3.4, based on
the given metrics, we experimented three concatenation places, i.e.after conv, after bn
and after relu by fine-tuning with weights initialized from encoder network trained with-
out mirror-connections. The corresponding RMSE are 0.531, 0.158 and 0.137 corre-
spondingly. Therefore, we adopt the proposed concatenation end-point.

Running speed In Fig. 6(c), we show the running time comparison between the SPN
and CSPN with kernel size as 3. We use the author’s PyTorch implementation online.
As can be seen, we can get better performance within much less time. For example, four
iterations of CSPN on one 1024 × 768 image only takes 3.689 ms, while SPN takes
127.902 ms. In addition, the time cost of SPN is linearly growing w.r.t. image size,
while the time cost of CSPN is irrelevant to image size and much faster as analyzed in
Sec. 3.3. In practice, however, when the number of iterations is large, e.g.“CSPN Iter
20”, we found the practical time cost of CSPN also grows w.r.t. image size. This is
because of PyTorch-based implementation, which keeps all the variables for each itera-
tion in memory during the testing phase. Memory paging cost becomes dominant with
large images. In principle, we can eliminate such a memory bottleneck by customizing
a new operation, which will be our future work. Nevertheless, without coding optima-
tion, even at high iterations with large images, CSPN’s speed is still twice as fast as
SPN.
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4.3 Comparisons

We compare our methods against various SOTA baselines in terms of the two proposed
tasks. (1) Refine the depth map with the corresponding color image. (2) Refine the depth
using both the color image and sparse depth samples. For the baseline methods such as
SPN [32] and Sparse-to-Dense [13], we use the released code released online from the
authors.
NYU v2. Tab. 1 shows the comparison results. Our baseline methods are the depth out-
put from the network of [13], together with the corresponding color image. At upper part
of Tab. 1 we show the results for depth refinement with color only. At row “Bilateral”,
we refine the network output from [13] using bilateral filtering [28] as a post-processing
module with their spatial-color affinity kernel tuned on our validation set. Although the
output depths snap to image edges (Fig. 1(c)), the absolute depth accuracy is dropped
since the filtering over-smoothed original depths. At row “SPN”, we show the results
filtered with SPN [14], using the author provided affinity network. Due to joint train-
ing, the depth is improved with the learned affinity, yielding both better depth details
and absolute accuracy. Switching SPN to CSPN (row “CSPN”) yields relative better
results. Finally, at the row “UNet”, we show the results of just modifying the network
with mirror connections as stated in Sec. 3.4. The results turn out to be even better than
that from SPN and CSPN, demonstrating that by simply adding feature from beginning
layers, the depth can be better learned.

At lower part of Tab. 1, we show the results using both color image and sparse depth
samples, and all the results preserves the sparse depth value provided. We randomly
select 500 depth samples per image from the ground truth depth map.

For comparison, we consider a baseline method using as-rigid-as-possible (ASAP) [50]
warping. Basically the input depth map is warped with the sparse depth samples as con-
trol points. At row “ASAP”, we show its results, which just marginally improves the
estimation over the baseline network. For SPN, we also apply the similar replacement
operation in Eq. (4) for propagation, and the results are shown at row “SPN”, which
outperforms both the results form ASAP and SPN without propagation of SD due to
joint training helps fix the error of warping. At row “UNet + SPN”, we use our UNet ar-
chitecture for learning affinity with SPN, which outperforms “SPN”, while we did not
see any improvements compared with that only using UNet. Nevertheless, by replac-
ing SPN with our CSPN, as shown in row “UNet + CSPN”, the results can be further
improved by a large margin and performs best in all cases. We think this is mostly be-
cause CSPN updates more efficiently than SPN during the training. Some visualizations
are shown in Fig. 7. We found the results from CSPN do capture better structure from
images (highlighted with dashed bounding boxes) than that from other state-of-the-art
strategies.
KITTI. Tab. 2 shows the depth refinement with both color and sparse depth samples.
Ours final model “UNet + CSPN” largely outperforms other SOTA strategies, which
shows the generalization of the proposed approach. For instance, with a very strict met-
ric δ < 1.02, ours improves the baseline [13] from 30% to 70%, which is more than
2× better. More importantly, CSPN is running very efficiently, thus can be applied to
real applications. Some visualization results are shown at the bottom in Fig. 8. Com-
pared to the network outputs from [13] and SPN refinement, CSPN sees much more
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(a) (b) (f)(e)(c) (d)

Fig. 7: Qualitative comparisons on NYU v2 dataset. (a) Input image; (b) Sparse depth
samples(500); (c) Ma et al.[13]; (d) UNet(Ours)+SPN[32]; (e) UNet+CSPN(Ours); (f)
Ground Truth. Most significantly improved regions are highlighted with yellow dash
boxes (best view in color).

details and thin structures such as poles near the road (first image (f)), and trunk on the
grass (second image (f)). For the third image, we highlight a car under shadow at left,
whose depth is difficult to learn. We can see SPN fails to refine such a case in (e) due
to globally vast lighting variations, while CSPN learns local contrast and successfully
recover the silhouette of the car. Finally, we also submit our results to the new KITTI
depth completion challenge 2 and show that our results is better than previous SOTA
method [45].

Table 2: Comparison results on KITTI dataset [2]

Method Preserve “SD” Lower the better Higher the better
RMSE REL δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Ma et al. [13] 3.378 0.073 30.0 65.8 85.2 93.5 97.6 98.9
+SPN [32] X 3.243 0.063 37.6 74.8 86.0 94.3 97.8 99.1
+CSPN(Ours) X 3.029 0.049 66.6 83.9 90.7 95.5 98.0 99.0
+UNet(Ours) 3.049 0.051 62.6 83.2 90.2 95.3 97.9 99.0
+UNet(Ours)+SPN X 3.248 0.059 52.1 79.0 87.9 94.4 97.7 98.9
+UNet+CSPN(Ours) X 2.977 0.044 70.2 85.7 91.4 95.7 98.0 99.1

2 http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=
depth_completion

http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion
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5 Conclusion

In this paper, we propose convolutional spatial propagation network (CSPN), which can
be jointly learned with any type of CNN. It can be regarded as a linear diffusion process
with guarantee to converge. Comparing with previous spatial propagation network [14]
which learns the affinity, CSPN is not only more efficient (2-5× faster), but also more
accurate (over 30% improvement) in terms of depth refinement. We also extend CSPN
by embedding sparse depth samples into the propagation process, which provides supe-
rior improvement over other SOTA methods [13]. Since our framework is general, in the
future, we plan to apply it to other tasks such as image segmentation and enhancement.

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

Fig. 8: Qualitative comparisons on KITTI dataset. (a) Input image; (b) Sparse
depth samples(500); (c) Ground Truth; (d) Ma et al.[13]; (e) Ma[13]+SPN[32];(f)
UNet+CSPN(Ours). Some details in the red bounding boxes are zoomed in for better
visualization (best view in color).
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