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Abstract. A group of transition probability functions form a Shannon’s channel whereas a group 
of truth functions form a semantic channel. Label learning is to let semantic channels match 
Shannon’s channels and label selection is to let Shannon’s channels match semantic channels. The 
Channel Matching (CM) algorithm is provided for multi-label classification. This algorithm 
adheres to maximum semantic information criterion which is compatible with maximum likelihood 
criterion and regularized least squares criterion. If samples are very large, we can directly convert 
Shannon’s channels into semantic channels by the third kind of Bayes’ theorem; otherwise, we can 
train truth functions with parameters by sampling distributions. A label may be a Boolean function 
of some atomic labels. For simplifying learning, we may only obtain the truth functions of some 
atomic label. For a given label, instances are divided into three kinds (positive, negative, and 
unclear) instead of two kinds as in popular studies so that the problem with binary relevance is 
avoided. For each instance, the classifier selects a compound label with most semantic information 
or richest connotation. As a predictive model, the semantic channel does not change with the prior 
probability distribution (source) of instances. It still works when the source is changed. The 
classifier changes with the source, and hence can overcome class-imbalance problem. It is shown 
that the old population’s increasing will change the classifier for label “Old” and has been 
impelling the semantic evolution of “Old”. The CM iteration algorithm for unseen instance 
classification is introduced. 

Keywords: Shannon’s channel, Semantic channel, Bayes’ theorem, Semantic information, Multi-
label classification, Truth function, Class-imbalance, Semi-supervised learning. 

1 Introduction 

There have been many valuable studies [1-6] about multi-label classification.  Information, cross-
entropy, and uncertainty criterions also have been used [7-9]. This study inherits some methods pre-
sented by others. However, this study aims at: 1) Letting machine learning from big enough samples 
for the semantic meanings (truth functions) of labels; 2) Decomposing the multi-label learning task into 
a number of independent label learning tasks without problem with binary relevance; 3) Overcoming 
the class imbalance problem when the prior probability distribution of instances is variable; 3) Adher-
ing to Maximum Likelihood (ML) criterion by using Maximum Semantic Information (MSI) criterion 
that is compatible with ML criterion and close to Regularized Least Squares criterion. 

In poplar machine learning studies, Bayesian inference is often used. However, this study uses a pair 
of new Bayes’ formulas (i. e. Bayes’ Theorem III) for setting up the conversion relation between likeli-
hood functions and truth functions, and uses truth functions to describe membership relations between 
instances and classes.  

In recent two decades, the cross-entropy method has become popular [4]. However, Lu [10] pro-
posed the cross mutual information defined with the cross entropy as early as 199. He also proposed a 
matching function R(G) between Shannon’s mutual information and semantic mutual information or 
average log-normalized-likelihood [11-12] for the optimization of semantic communication. Recently, 
we found this function was very useful to semi-supervised learning [13] and unsupervised leaning [14]. 
We also found the new method was useful to multi-label classification.   

The rest of this paper is organized as follows. The next section provides mathematical methods in-
cluding the third kind of Bayes’ theorem and the semantic information method. Section 3 discusses 
how new methods are applied to multi-label classifications for clear classes and fuzzy classes and how 
the classifier with the semantic information criterion changes with the prior probability distribution of 
instances for overcoming the class-imbalance problem. Section 4 simply introduces the CM iteration 
algorithm for semi-supervised classification with unseen instences. Section 5 includes some discus-
sions and conclusions. 
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2 Mathematical Methods 

2.1 Distinguishing Statistical Probability and Logical Probability 

Definition 2.1.1 Let U denote the instance set and X denote the discrete random variable taking a value 
from U. That means X∈U={x1, x2, …}. For theoretical convenience, we assume that U is one-
dimensional. Let L denote the set of selectable labels, including some atomic labels and some com-
pound labels and Y∈L={y1, y2, …}. Similarly, let La denote the set of some atomic labels and a∈
La={ a1, a2, …}. 

Definition 2.1.2 A label yj is also as a predicate yj(X)= “X∈Aj”. For each yj, U has a subset Aj, every 
instance of which makes yj true. Let P(Y=yj) denote the statistical probability of yj, and P(X∈Aj) denote 
the Logical Probability (LP) of yj. For simplicity, let P(yj)= P(Y=yj) and T(yj)=T(Aj)= P(X∈Aj). 

We call P(X∈Aj) the logical probability because according to Tarski’s theory of truth [15], P(X∈
Aj)=P(“X∈Aj” is true)=P(yj is true). Hence the conditional LP of yj for given X is the feature function 
of Aj and the truth function of yj. Let it be denoted by T(Aj|X). There is 

( ) ( ) ( | )j i j i
i

T A P x T A x            (2.1) 

According Davidson’s truth-conditional semantics [16], T(Aj|X) ascertains the semantic meaning of 
yj. Note that statistical probability distribution, such as P(Y), P(Y|xi), P(X), and P(X|yj), are normalized 
whereas the LP distribution is not normalized. For example, in general,  

 T(A1)+T(A2)+…+T(An)≥1, T(A1|xi)+T(A2|xi)+…+T(An|xi)≥1 

P(Aj)=T(Aj) only when {A1, A2, …, An} is a partition of U and Y is always correctly used. T(Aj|X) is 
similar to P(yj|X); yet its maximum is 1. 

If Aj may be fuzzy [17], let Aj be replaced with θj, which means a fuzzy set or fuzzy class. The θj can 
also be regarded as a sub-model of a predictive model θ. In this paper, likelihood function P(X|θj) is 
equal to P(X|θ, yj) in popular likelihood method. The usage of the sub-model θj will make the predic-
tive model flexile and the statements clearer. 

2.2 Three Kinds of Bayes’ Theorems  

The Bayes’ theorem is described by Bayes’ formulas. Actually, this theorem has three forms, which 
are used by Bayes [18], Shannon [19], and the author [12] respectively. 

Bayes’ Theorem I (used by Bayes): Assume that sets A, B∈2U, Ac is the complementary set of A, 
T(A)=P(X∈A), and T(B)= T(A)=P(X∈B). Then 

T(B|A)=T(A|B)T(B)/T(A), T(A)= T(A|B)T(B)+ T(A|Bc)T(Bc)     (2.2) 

T(A|B)=T(B|A)T(A)/T(B), T(B)= T(B|A)T(A)+ T(B|Ac)T(Ac)      (2.3) 

Note there is only one random variable X and two logical probabilities. 
Bayes’ Theorem II (used by Shannon): Assume that X∈U, Y∈V, P(xi)=P(X=xi), and P(yj)= 

P(Y=yj). Then 

( | ) ( | ) ( ) / ( ),  ( ) ( ) ( | )i j j i i j j i j i
i

P x y P y x P x P y P y P x P y x      (2.4)

 ( | ) ( | ) ( ) / ( ),  ( ) ( ) ( | )j i i j j i i j j j
j

P y x P x y P y P x P x P y P x y      (2.5) 

Note there are two random variables and two statistical probabilities. In each of the above two theo-
rems, two formulas are symmetrical and denominators are normalizing constants.  



3 
Bayes’ Theorem III: Assume that P(X)=P(X=any) and T(Aj)=P(X∈Aj). Then 

( | ) ( | ) ( ) / ( )  ( ) ( ) ( | )j j j j i j i
i

P X A T A X P X T A T A P x T A x ，    (2.6) 

( | )= ( | ) ( ) / ( ),  ( ) 1/ max( ( | ) / ( ))j j j j jT A X P X A T A P X T A P X A P X  (2.7) 

The two formulas are asymmetrical because there is a statistical probability and a logical probability. 
T(Aj) in (2.7) may be call longitudinally normalizing constant. The proof is provided in another paper 
[20]. When the set Aj becomes a fuzzy set θj, the Bayes’ theorem III is still tenable. 

2.3 Distinguishing Statistical Probability and Logical Probability 

In Shannon’s information theory [19], P(X) is called the source and P(Y) is called the destination, the 
transition probability matrix P(Y|X) is called the channel. So, a channel is formed by a group of transi-
tion probability function:  

 P(Y|X): P(yj|X), j=1, 2, …, n 

Note that P(yj|X) is different from P(Y|xi); P(yj|X) (yj is constant and X is variable) is also not normal-
ized. It has two important properties: 1) P(yj|X)  can be used for Bayes’ prediction to get P(X|yj); after 
P(X) becomes P’(X), P(yj|X) still works for the prediction; 2) P(yj|X) by a constant k can make the same 
prediction because 

'( ) ( | ) '( ) ( | )
= '( | )

'( ) ( | ) '( ) ( | )
j j

j
i j i i j i

i i

P X kP y X P X P y X
P X y

P x kP y x P x P y x


 
       (2.8) 

Similarly, a group of truth functions form a semantic channel: 

 T(θ|X) :  T(θj|X),  j=1, 2, …, n 

According to (2.8), if T(θj|X)∝P(yj|X) or T(θj|X)=P(yj|X)/max(P(yj|X)), there is P(X|θj)=P(X|yj) 

2.4 To Define semantic information with log (normalized likelihood) 

The (amount of) semantic information conveyed by yj about xi is defined with log-normalized-
likelihood [10, 11]:  

( | ) ( | )
( ; ) log = log

( ) ( )
i j j i

i j
i j

P x T x
I x

P x T

 



         (2.9) 

where Bayes’ Theorem III is used. For an unbiased estimation yj, its truth function may be assumed to 
be a Gaussian distribution without coefficient:  

 T(θj|X)=exp[-(X-xj)2/(2d2)]  (2.10) 

Then I(xi; θj) changes with xi as shown in Fig. 1. This information criterion reflects Popper’s thought 
[21]. It tells that the larger the deviation is, the less information there is; the less the logical probability 
is, the more information there is; and, a wrong estimation may convey negative information. 
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Fig. 1. Illustration of semantic information measure. 

To average I(xi; θj), we have 

( | ) ( | )
( ; ) ( | ) log = ( | ) log

( ) ( )
i j j i

j i j i j
i ii j

P x T x
I X P x y P x y

P x T

 



        (2.11)

( | )
( ; ) ( ) ( | ) log

( )

( | )
= ( , ) log = ( ) ( | )

( )

( ) ( ) log ( ),  ( | ) ( , ) log ( | )

i j
j i j

j i i

j i
i j

j i j

j j i j j i
j j i

P x
I X P y P x y

P x

T x
P x y H H X

T

H P y T H X P x y T x





 



   





   

 



 

(2.12) 

where I(X; θj) is generalized Kullback-Leibler (KL) information, and I(X; θ) is the semantic mutual 
information (a mutual cross-entropy). It is easy to find that when P(xi|θj)=P(xi|yj) for all i, j, I(X; θ) 
reaches its upper limit: Shannon mutual information I(X; Y).  To bring (2.10) into (2.12), we have  

 2 2

( ; ) ( ) ( | )

            ( ) log ( ) ( ) 2) /, (j j i j i
j j i

j j

I X H H X

P y T P dx x xy

  





   



     (2.13) 

It is easy to find that the maximum semantic mutual information criterion is similar to the regular-
ized least squares criterion. H(θ|X) is simillar to mean squared error and H(θ) is simillar to negative 
regularization term.  

Assume that a sample is D={(x(t); y(t)|t=1, 2, …, N; x(t)∈U; y(t)∈V}, a conditional sample is 
{x(1), x(2), …, x(Nj)} for given yj, and the sample points come from independent and identically 
distributed random variables. If Nj is big enough, then P(xi|yj)= Nij/Nj where Nij is the number of xi in 
D. Then we have the log normalized likelihood: 

( | ) ( | )
log = ( | ) log = ( ; )

( ) ( )

jiN

i j i j
j i j j j

ii i i

P x P x
N P x y N I X

P x P x

 


 
 
 

     (2.14) 

To average I(X; θj) for different yj, we will have the formula: Average log(normalized likeli-
hood)=Semantic mutual information. Since P(X) is irrelevant to θj, the maximum semantic information 
criterion is equivalent to the maximum likelihood criterion. 



5 

3 Multi-Label Classification for Seen Instances 

3.1 Multi-Label Learning (the Receiver’s Logical Classification) for Truth Functions without 
Parameters 

From the viewpoint of semantic communication, the sender’s classification and the receiver’s classifi-
cation are different. The receiver learns from samples to obtain labels’ semantic meanings, i. e. the 
truth functions. The learning means logical classification. Then, when he receives yj, he can predict X 
to obtain P(X|θj) according to P(X) and T(θj|X) so that he can make a decision. However, for given an 
instance, the sender needs to select a label with most information from several true or truer labels. This 
is selective classification. We may say that the logical classification is for the denotations of labels and 
selective classification is for connotations of labels; the learning is letting a semantic channel match a 
Shannon’s channel whereas the selectin is letting a Shannon’s channel match a semantic channel 

We use an example to show the two kinds of classifications. Assume that U is a set of different ages. 
There are subsets A1={young people}={X|15≤X≤35},  A2={adults}={X|X≥18}, 
A3={juveniles}={X|X<18}=A2

c (c means complementary set) of U, which form a cover of U. Three truth 
functions T(A1|X), T(A2|X), and T(A3|X) represent the semantic meanings of y1, y2, and y3 respectively, 
as shown in Fig. 2. 

 

Fig. 2. Three sets form a cover of U, indicating the semantic meanings of y1, y2, and y3. 

In this example, T(A2)+T(A3)=1. If T(A1)=0.3, then the sum of the three logical probabilities is 
1.3>1. Yet, the sum of three statistical probabilities P(y1)+P(y2) +P(y3) must be 1. P(y1) may changes 
from 0 to 0.3. For example, P(y1)=0.2, P(y2)=0.5, and P(y3)=0.3. 

Using the truth functions T(Aj|X) or T(θj|X) instead of Bayesian probability P(θ, yj|X) or P(θj|X) for 
multi-label learning, we can independently obtain the truth function of a label without considering ∑j 
P(yj|X)=1 or ∑j P(θj|X)=1.  

Definition 2.3.1 For a sampling D with distribution P(X), all instances in Aj of D form a window 
sample of D with distribution P(X|yj), which should be equal to P(X|Aj). We call the P(X|yj) a window 
distribution of P(X). 

Theorem 2.3.1 If P(X) and P(X|yj) come from the same sample D, then P(X|yj) is a window distribu-
tion of P(X). If D is big enough so that every possible example appears at least one time, then we can 
directly obtain the numerical solution of feature function of Aj (as shown in Fig. 3 (a)) according to 
Bayes’ Theorem III and II: 

 
( | )( | )

*( | )= max( = ( | ) / max( ( | )
( ) ( )

jj
j j j

P X yP X y
T A X P y X P y X

P X P X
）   (3.1) 
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The proof is omitted. It is easy to prove that changing P(X) and P(Y) does not affect T*(Aj|X) be-

cause T*(Aj|X) (j=1, 2, …) reflect the property of Shannon’s channel or the semantic channel. This 
formula is also tenable to fuzzy set θj.  

If P(X|yj) is from another sampling instead of the window sample of P(X), then T*(Aj|X) will not be 
smooth as shown in Fig. 3 (b). The larger the size of D is, the smoother the truth function is. 

 
(a)                                                        (b) 

Fig. 3. The numerical solution of the membership function according to (3.1); (a) for a crisp set and (b) for a fuzzy 
set.   

3.2 Selecting Examples for Atomic Labels 

According to mathematical logic, k atomic propositions may produce 2k independent clauses. The logi-
cal add of some of them has 22**k-2 results, neglecting contradiction and tautology. So, there are 22**k-2 
possible compound labels. To simplify the learning, we may filter examples in a multi-label sample to 
form a new sample Da with k atomic labels and k corresponding negative labels. We may use First-
Order-Strategy [6-8] to split examples in D with multi-labels or multi-instances into simple examples, 
such as, to split (x1; a1, a2) into (x1; a1) and (x1; a2), and to split (x1, x2; a1) into (x1; a1) and (x2; a1) [21]. 
Let Ya denote one of the 2k labels, i. e. Ya∈{a1, a1’, a2, a2’, …, ak, ak’}. Consider some aj’ does not 
appears in Da, Ya may be one of k+k’ (k’<k) labels. From Da, we can obtain P(X, Ya) and corresponding 
semantic channel T*(θa|X) or T*(θaj|X) (j=1,2, …, 2k). If Da is big enough, we can obtain the numerical 
solution of T(θa|X) by (3.1); otherwise, we need to construct T(θa|X) by some parameters and to train it 
by P(X|Ya) and P(X).  

3.3 Multi-label Learning for Truth Functions with Parameters  

If P(Y, X) is obtained from a not big enough sample, we can optimize the truth function with parame-
ters of every compound label by  

( | ) ( | )

( | )
*( | ) arg max ( ; )= arg max ( | ) log

( )j j

j i
j j i j

T X T X i j

T x
T X I X P x y

T 


 


      (3.2) 

It is easy to prove that when P(X|θj)=P(X|yj), I(X; θj) reaches the maximum and is equal to the KL 
information I(X; yj). So, the above formula is compatible with (3.1). Comparing two truth functions, we 
can find logical implication between two labels. If T(θj|X)≤T(θk|X) for every X, then yj implies yk, and θj 
is the subset of θk. We may use logistic function, Gaussian function without coefficient, and other func-
tions as truth functions with parameters. The detailed discussions will be provided later.  

If we only want to obtain the truth functions of some atomic labels because D is too big, we can op-
timize an atomic label by 
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( | )

( | )

*( | ) arg max[ ( ; ) ( ; )]

( | ) ( | )
= arg max [ ( | ) log ( | ) log ]

( ) ( )

j

aj

c
aj aj aj

T X

c
aj i aj i

i j i j c
T X i aj aj

T X I X I X

T x T x
P x a P x a

T T





  

 
 

 


   (3.3) 

where T(θaj
c|xi)=1-T(θaj|xi). T*(θaj|xi) is only affected by P(aj|X) and P(aj’|X). Although those examples 

without aj or aj’ affect T*(θaj), they do not affect T*(θaj|xi). For a given label, this method actually di-
vides all instances into three kinds: the positive, the negative, and the unclear. T*(θaj|xi) is not affected 
by unclear instances.  

If a negative label aj’ does not appear in D or Da, the second part will be 0. So, this binary classifica-
tion is different from popular One vs Rest [3] classification, with which the problem is that an example 
(xi, a1) without label a2 does not means that xi makes a2’ true. For example, xi=25, xi makes both 
a1=“youth” and a2=“adult” true. 

We may also train T(θaj|xi) and T(θaj’|xi) separately. Then T(θaj|X)+T(θaj’|X)=1 will not be tenable. In 
many cases, we use three or more labels rather than two to tag one dimension of instance spaces, or 
each label is not a strictly negative label of another, the formula (3.2) is still suitable. For example, the 
truth functions of “Child”, “Youth”, and “Adult” may be separately optimized by three conditional 
sampling distributions. We needn’t decompose a multi-class classification into several binary classifi-
cations. The following classifier h(X) will resolve instance space partition problem.  

3.4 Multi-label Selection (the Sender’s Selective Classification) 

For a seen instance X, the label sender selects yj* by classifier 

 
( | )

*= ( ) arg m ax log ( ; )= arg m ax log
( )j j

j
j j i

y y j

T X
y h X I x

T





    (3.4) 

T(θj) is related to the class-imbalance. If T(θj|X)∈{0,1}, the information measure becomes Bar-Hillel 
and Carnap’s information measure [22]; the classifier becomes 

 
( | ) 1( | ) 1

*= ( ) arg max log[1/ ( )] arg min ( )
jj j j

j j j
T A Xy T A X y

y h X T A T A


    (3.5) 

For X=xi, If several labels are correct or approximatively correct, we select one from 2k independent 
clauses with maximum I(xi; θj). For example, when k=2, these clauses are a1∧a2, a1∧a2’, a1’∧a2, and 
a1’∧a2’.   

 When sets are fuzzy, we may use a little different fuzzy logic [10] from Zadeh’ [17] so that a 
compound label is a Boolean function of some atomic labels. There is  

 T(θ1∩θ2
 c|X)=max(0, T(θ1|X)-T(θ2|X))  (3.6) 

so that T(θ1∩θ1
 c|X)=0 and T(θ1∪θ1

 c|X)=1. Fig. 4 shows the truth functions of 22 independent clauses, 
which form a partition of plan U*[0,1]. 
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Fig. 4. The truth functions of 22 independent clauses 

3.5 How the Classifier h(X) Changes with P(X) to Overcome Class-imbalance Problem  

Although optimized truth function T*(θj|X) does not change with P(X), the classifier h(X) changes with 
P(X).  Assume that y4=“Old person”, T*(θ4|X)=1/[1+exp(-0.2(X-75))], P(X)=1-1/[1+exp(-0.15(X-
c）)]. The h(X) changes with c as shown in Table 1. 

Table 1. The classifier h(X) for y4=“Old person” changes with P(X) 

c Population density decreasing ages Classifier 

50 40-60 y4=h(X>48) 

60 50-70 y4=h(X>54) 

70 60-80 y4=h(x>57) 

 
The dividing point of h(X) increases when old population increases because semantic information crite-
rion encourages us to reduce the failure of reporting small probability events. Longevous population’s 
increasing changes h(X); new h(X) will change Shannon’s channel and produce new samples; new 
semantic channel will match new Shannon’s channel… The semantic meaning of “Old” should have 
been evolving with human lifetimes in this way. Meanwhile, the class-imbalance problem is overcome. 

4 The CM Iteration Algorithm for Multi-Label Classification of Unseen 
Instances 

For unseen instances, assume that observed condition is Z∈C={z1, z2, …}; the classifier is Y=f(Z); a 
true class or true label is XL∈UL={X1, X2, …}; a sample is Dz={(X(t); z(t)|t=1, 2, …, N; X(t)∈UL; z(t)
∈C}. From Dz, we can obtain P(XL, Z). If Dz is not big enough, we may also use the likelihood meth-
od to obtain P(XL, Z) with parameters. The problem is that Shannon’s channel is not fixed and also 
needs optimization. Hence, we treat unseen instance learning as semi-supersized learning. Using the 
channels’ matching iteration algorithm or the CM iteration algorithm [13, 14], we can find optimal 
Shannon’s channel and Semantic channel at the same time. 

Let Cj be a subset of C and yj=f(Z|Z∈Cj). Hence S={C1, C2, …} is a partition of C. Our aim is, for 
given P(X, Z) from Dz, to find optimal S, which is 

 
( | )

* arg max ( ; | ) arg max ( ) ( | ) log
( )
j i

j i j
S S j i j

T x
S I X S P C P x C

T





     (4.1) 

First, we obtain the Shannon channel for given S: 
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 ( | ) ( | ),  1, 2,..., ; 1, 2,...,
k j

j i k i
z C

P y X P z X i n j n


      (4.2) 

From this Shannon’s channel, we can obtain the semantic channel T(θ|XL) in numbers or with parame-
ters. For given Z, we have conditional semantic information 

   
( | )

( ; |Z) ( | ) log
( )
j i

i j i
i j

T X
I X P X Z

T





    (4.3) 

Then let the Shannon channel match the semantic channel by 

 
'

'

[exp( ( ; | ))]
( | ) lim

[exp( ( ; | ))]

s
L j

j ss
L j

j

I X Z
P y Z

I X Z







,  j=1, 2, …, n  (4.4) 

Since s-->∞, P(yj|Z)=0 or 1. Hence, the above formula provides a classifier Y=f(Z) and a new S. Re-
peating (4.2)-(4.4) until S does not change. The convergent S is the S* we seek. Some iterative exam-
ples show that the above algorithm is fast and reliable. The convergence can be proved with the help of 
the R(G) function as shown in Fig. 5. 

 

 
Fig. 5.  Illustrating the iterative convergence for tests, estimations, and unseen instance classifications. The 
matching I is for G=R. The matching II is to increase R to the top-right corner of a R(G) function. Repeating the 
matching I and matching II can maximize R and G to obtain Rmax and Gmax. 

 For more details, see  [13]. 

5 Discussions and Conclusions 

This paper brings truth functions of labels into new Bayes’ formulas to produce likelihood functions. 
With the semantic information method (SIM), for very big samples, we can directly convert sampling 
distribution into truth functions for semantic meanings of labels. For not big enough samples, we can 
train truth functions with parameters by sampling distributions. When the prior distribution of instances 
is changed, the truth function as predictive model still works. Multi-label classification is distinguished 
into receivers’ logical classification (learning) and senders’ selective classification so that the logical 
classification is much simple. We discuss how the classifier changes with the prior distribution of in-



10 
stances and how class-imbalance problem is overcome. Unseen instance classification is treated as 
semi-supervised classification and can be resolved by the Channel Matching (CM) iteration algorithm.  

The SIM is a challenge to Bayesian inference. The comparison between them needs further discus-
sions. Regularized Least Squares criterion is getting popular. It seems that maximum likelihood criteri-
on is out of date. However, this paper shows that the maximum semantic information criterion is com-
patible with the both. The mutual matching of semantic channel and Shannon’s channel is very similar 
to the mutual contest of generator and discriminator in GAN [24]. The relationship between the two 
methods is worth analyzing. The SIM is also compatible with Wittegenstein’s viewpoint that the mean-
ing of a word lies its use [25]. In this paper, the instance space is assumed to be one dimensional. The 
optimization of truth functions with parameters for multidimensional instance space needs further stud-
ies. 

The application of the CM iteration algorithm to mixture models or non-supervised learning also 
shows its advances [14] in comparison with the EM algorithm. It seems that the CM algorithm has 
wide potential applications. The SIM is concise and compatible with the thoughts of Shannon, Fisher, 
Popper, Wittegenstein, Bayes, Zadeh, Tarski, and Davidson. It should be a competitive alternative to 
Bayesian inference. 
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