
A Distributed Algorithm for Finding Hamiltonian Cycles in
Random Graphs in O(log n) Time

Volker Turau
Hamburg University of Technology, Institute of Telematics
Am Schwarzenberg-Campus 3, 21073 Hamburg, Germany

turau@tuhh.de

Abstract

It is known for some time that a random graph G(n, p) contains w.h.p. a Hamiltonian cycle
if p is larger than the critical value pcrit = (logn + log logn + ωn)/n. The determination of a
concrete Hamiltonian cycle is even for values much larger than pcrit a nontrivial task. In this
paper we consider random graphs G(n, p) with p in Ω̃(1/

√
n), where Ω̃ hides poly-logarithmic

factors in n. For this range of p we present a distributed algorithm AHC that finds w.h.p. a
Hamiltonian cycle in O(logn) rounds. The algorithm works in the synchronous model and uses
messages of size O(logn) and O(logn) memory per node.

1 Introduction
Surprisingly few distributed algorithms have been designed and analyzed for random graphs. To
the best of our knowledge the only work dedicated to the analysis of distributed algorithms for
random graphs is [5, 16,17]. This is rather surprising considering the profound knowledge about the
structure of random graphs available since decades [3, 10]. While algorithms designed for general
graphs obviously can be used for random graphs the specific structure of random graphs often allows
to prove asymptotic bounds that are far better. In the classical Erdős and Rényi model for random
graphs a graph G(n, p) is an undirected graph with n nodes where each edge independently exists
with probability p [7]. The complexity of algorithms for random graphs often depends on p, e.g.,
Krzywdziński et al. [16] proposed a distributed algorithm that finds w.h.p. a coloring of G(n, p) with
18np colors in O(ln ln p−1) rounds.

In this work we focus on finding Hamiltonian cycles in random graphs. The decision problem,
whether a graph contains a Hamiltonian cycle, is NP-complete. It is a non-local graph problem, i.e.,
it is required to always consider the entire graph in order to solve the problem. It is impossible to
solve it in the local neighborhoods. For this reason there is almost no work on distributed algorithms
for finding Hamiltonian cycles in general graphs. On the other hand it is well known that G(n, p)
contains w.h.p. a Hamiltonian cycle, provided p ≥ pcrit = (log n + log log n + ω(n))/n, where ω(n)
satisfies limn→∞ ω(n) = ∞ [3, Th. 8.9]. There is a large body of work on sequential algorithms for
computing w.h.p. a Hamiltonian cycle in a random graph (e.g. [1, 4, 21,23,25]).

We are only aware of two distributed algorithms for computing Hamiltonian cycles in ran-
dom graphs. The algorithm by Levy et al. [17] outputs w.h.p. a Hamiltonian cycle provided p =
ω(
√

log n/n1/4). This algorithm works in synchronous distributed systems, terminates in linear worst-
case number of rounds, requires O(n3/4+ε) rounds on expectation, and uses O(n) space per node.
The algorithm of Chatterjee et al. [5] works for p ≥ c log n/nδ (0 < δ ≤ 1) and has a run time of
Õ(nδ).

The search for a distributed algorithm for a Hamiltonian cycle is motivated by the usage of virtual
rings for routing in wireless networks [19,26]. A virtual ring is a directed closed path involving each
node of the graph, possibly several times. Virtual rings enable routing with constant space routing

1

ar
X

iv
:1

80
5.

06
72

8v
1

 [
cs

.D
C

]
 1

7
M

ay
 2

01
8

tables, messages are simply forwarded along the ring. The downside is that they may incur a linear
path stretch. To attenuate this, distributed algorithms for finding short virtual rings have been
proposed [12, 26]. Hamiltonian cycles are the shortest possible virtual rings and therefore of great
interest. Short virtual rings are also of interest for all token circulation techniques as discussed in [8].
Kim et al. discuss the application of random Hamiltonian cycles for peer-to-peer streaming [13].
Rabbat et al. present distributed optimization algorithms for in-network data processing, aimed
at reducing the amount of energy and bandwidth used for communication based on Hamiltonian
cycles [22], see also [24].

This paper uses the synchronous CONGEST model, i.e., each message contains at most O(log n)
bits. Furthermore, each node has only O(log n) bits of local memory. Without these two assumptions
there is a very simple solution provided the nodes have unique identifiers. First a BFS-tree rooted in
a node v0 is constructed. Then the adjacency list of each node is convergecasted to v0 which applies a
sequential algorithm to compute w.h.p. a Hamiltonian path (see Sec. 1.1). The result is broadcasted
into the graph and thus each node knows its neighbor in the Hamiltonian cycle. This can be achieved
in O(diam(G)) rounds. Note that if p = ωn log n/n then w.h.p. diam(G(n, p)) = O

(
logn
lognp

)
[6, 10].

In particular for p in Ω̃(1/
√
n) w.h.p. the diameter of G(n, p) is constant [2].

For the stated restrictions on message size and local storage we propose an algorithm that termi-
nates in a logarithmic number of rounds, this is a significant improvement over previous work [5,17].
Our contribution is the distributed algorithm AHC, its properties can be summarized as follows.

Theorem 1. Let G(n, p) with p ≥ (log n)3/2/
√
n be a random graph. Algorithm AHC computes

in the synchronous model w.h.p. a Hamiltonian cycle for G using messages of size O(log n). AHC

terminates in O(log n) rounds and uses O(log n) memory per node.

1.1 Related Work
Pósa showed already in 1976 that almost all random graphs with cn log n edges possess a Hamiltonian
cycle [21]. Later Komlós et al. determined the precise threshold pcrit for the existence of a Hamiltonian
cycle in a random graph [14]. A sequential deterministic algorithm that works w.h.p. at this threshold
requiring O(n3+o(1)) time is due to Bollobás et al. [4]. For larger values of p or restrictions on the
minimal node degree, more efficient algorithms are known [1, 11]. The algorithm of Thomason finds
a Hamiltonian path or shows that no such path exists provided p ≥ 12n−1/3 [25].

The above cited algorithms were all designed for the sequential computing model. Some exact
algorithms for finding Hamiltonian cycles in G(n, p) on parallel computers have been proposed [9].
The first operates in the EREW-PRAM model and uses O(n log n) processors and O(log2 n) time,
while the second one uses O(n log2 n) processors and O((log log n)2) time in the P-RAM model.
MacKenzie and Stout proposed an algorithm for CRCW-PRAM machines that operates in O(log∗ n)
expected time and requires n/ log∗ n processors [18]. Apart from the above mentioned work [5, 17]
we are not aware of any other distributed algorithm for this problem.

There are several approaches to construct a Hamiltonian cycle. The approach used by Levy et
al. at least goes back to the work of MacKenzie and Stout [18]. They initially construct a small cycle
with Θ(

√
n) nodes. As many as possible of the remaining nodes are assorted in parallel into

√
n

vertex-disjoint paths. During the final phase, each path and each non-covered vertex is patched into
the initial cycle.

The second approach is used in the proofs to establish the critical value pcrit (e.g., [15, 21]) and
all derived sequential algorithms (e.g., [4]). Initially a preferably long path is constructed, e.g., using
a depth first search algorithm [11]. This path is extended as long as the node at the head of the path
has a neighbor that is not yet on the path. Then the path is rotated until it can be extended again.
A rotation of the path cuts off a subpath beginning at the head, reverses the order of the subpath’s
nodes, and reattaches the subpath again. The procedure stops when no sequence of rotations leads
to an extendable path. The algorithm in [5] follows this approach.

2

2 Computational Model and Assumptions
This work employs the synchronous CONGEST model of the distributed message passing model [20],
i.e., each message contains at most O(log n) bits. Furthermore, each node has only O(log n) bits
of local memory. The communication network is represented by an undirected graph G = (V,E),
where V is a set of n processors (nodes) and E represents the set of m bidirectional communication
links (edges) between them. Each node carries a unique identifier. Communication between nodes
is performed in synchronous rounds using messages exchanged over the links. Upon reception of a
message, a node performs local computations and possibly sends messages to its neighbors. These
operations are assumed to take negligible time.

The prerequisite of Algorithm AHC is a distinguished node v0 which is the starting point of the
Hamiltonian cycle and acts as a coordinator in the final phases of AHC. The results proved in this
work hold with high probability (w.h.p.) which means with probability tending to 1 as n → ∞. The
probabilities p considered in this paper always depended on n, e.g., p ≥ (log n)3/2/

√
n, and we always

assume that limn→∞ p = 0.

3 Informal Description of Algorithm AHC

Algorithm AHC operates in sequential phases, each of them succeeds w.h.p. The first two phases last
O(log n) rounds. Each subsequent phase requires a constant number of rounds only. Phase 0 lasts
3(3 log n − 1) rounds and constructs a path P of length 3 log n starting in v0. In the next 3 log n
rounds Phase 1 closes P into a cycle C of length at most 4 log n. The following 16 log(n) phases are
called the middle phases. In each of those phases the number of nodes in C is increased. The increase
is by a constant factor until C has n/7 nodes. Afterwards, the increase declines roughly linearly until
C has n− 3 log n nodes. In each middle phase the algorithm tries to concurrently integrate as many
nodes into C as possible. This is achieved by replacing edges (v, w) of C by two edges (v, x) and
(x,w), where x is a node outside of C. At the end of the middle phases w.h.p. C has more than
n− 3 log n nodes.

The integration of the remaining 3 log n nodes requires a more sophisticated algorithm. This is
done in the final phases. The idea is to remove two edges – not necessarily adjacent – from C and
insert three new edges. This requires to reverse the edges of a particular segment of C of arbitrary
length. Thus, this is no longer a local operation. Furthermore, segments may overlap and hence, the
integration of several nodes can only be performed sequentially. Thus, this task requires coordination.
Node v0 takes over the role of a coordinator.

At the beginning of each final phase all nodes outside C that can be integrated report this to
v0, which in turn selects one of these nodes to perform this step. For this purpose a tree routing
structure is set up, so that each node can reach v0 w.h.p. in 3 hops. In order for the nodes of the
segment to perform the reordering concurrently, the nodes of C are numbered in an increasing order
(not necessarily consecutively) beginning with v0. The assignment of numbers is embedded into the
preceding phases with no additional overhead. The numbering is also maintained in the final 3 log n
integration steps. In order to accomplish the integration in a constant number of rounds – i.e.,
independent of the length of the segment – node v0 floods the numbers of the terminal nodes of the
segment to be reversed into the network. Upon receiving this information, each node can determine
if it belongs to the segment to be reversed and can recompute its number to maintain the ordering.
Note that this routing structure requires only O(log n) memory per node. Each of the 3 log n final
phases lasts a constant number of rounds.

Algorithm AHC stops when either C is a Hamiltonian cycle or no more nodes can be integrated
into C. The first event occurs w.h.p.

3

4 Formal Description
Algorithm AHC operates in synchronous rounds. By counting the rounds a node is always aware
in which round and therefore also in which phase it is. Each phase lasts a known fixed number of
rounds. If the work is completed earlier, the network is idle for the remaining rounds. This requires
each node to know n. Algorithm AHC gradually builds an oriented cycle C starting with node v0. The
cycle is maintained as a doubly linked list to support insertions. The orientation of C is administered
with the help of variable next – initially null – which stores the identifier of the next node on the
cycle in clockwise order. Also, v.next = null indicates that v is not yet on the cycle. In the following
each phase is described in detail.

4.1 Pre-processing
The algorithm is started by node v0 which executes algorithm Flood [20] to construct a BFS tree.
By Lemma 16 the diameter of G is w.h.p. at most 3. Thus, in 3 rounds a BFS tree rooted in v0 is
constructed (Lemma 5.3.1, [20]). After a further 6 rounds each node is aware of n the number of
nodes in the network. This allows to run each phase for the stated number of rounds.

4.2 Phase 0
In phase 0 an oriented path P starting in v0 of length 3 log n is constructed. Phase 0 lasts 3(3 log n−1)
rounds. Initially P = {v0} and v0.next = v0. The following steps are repeated 3 log n− 1 times.

1. The final node v of P sends an invitation message to all neighbors. All neighbors not on P
(i.e., nodes with next = null) respond to v.

2. If v does not receive any response the algorithm halts. Otherwise v randomly selects among
the nodes that have responded a node w, sets v.next := w, informs w that it is the new final
node, and instructs w to continue with phase 0. This message includes the id of node v0, i.e.,
at any point in time all nodes of P know v0.

4.3 Phase 1
In phase 1 the path P is extended into an oriented cycle C of length at most 4 log n. The following
steps are repeated at most log n times. Phase 1 lasts 3 log n rounds.

1. The final node v of P sends an invitation message to all neighbors, the message contains the
id of node v0. All neighbors not on P respond to v. The response includes the information
whether the recipient is connected to v0.

2. If v does not receive any response the algorithm halts. If at least one responding node is
connected to v0, then v randomly selects such a node w, sets v.next = w, and informs w to
close the cycle C, i.e., to set w.next = v0. Otherwise v randomly selects a responding node w
to extend P as in phase 0 and instructs w to repeat phase 1.

3. If after log n repetitions P is not a cycle then the algorithm halts otherwise the middle phases
start.

4.4 Middle Phases
While in the first two phases actions were executed sequentially, in the middle phases many nodes
are integrated concurrently. In each of the subsequent phases the following steps are performed (see
Fig. 1 for an example). Each of the 16 log n middle phases is performed in three rounds.

1. Each node w on C broadcasts its own id and the id of its predecessor on C using message I1.

4

2. If a node v outside C receives a message I1 from a node w such that the predecessor of w on
C is a neighbor of v, it inserts w into the set Cv.

3. Each node v outside C with Cv 6= ∅ randomly selects a node w from Cv and sends an invitation
message I2 to the predecessor of w on C.

4. Each node w ∈ C that received an invitation I2 randomly selects a node v from which it
received an invitation, sets w.next = v, and informs v with acceptance message I3 to set its
variable next to the old successor w′ of w. In other words the edge (w,w′) is replaced by the
edges (w, v) and (v, w′).

Individual extensions do not interfere with each other. Each node outside C gets in the last round of
a middle phase at most one request for extension and for each edge of C at most one request is sent.

w1
w2 w3 w4 w5 ……

v1 v2

I1 I1

I1 I1

I1

I1

I2

I2

I3

Figure 1: The integration of nodes during a middle phase: Nodes wi sent a message I1 to all nodes
outside C (red arrows). Nodes v1 and v2 sent a message I2 back to w4; v2 might have also selected
w4 and sent I3 to w5. Node w4 selected v1 and sent back message I3. Edge (w4, w3) is replaced by
the edges (w4, v1) and (v1, w3). The extended cycle is depicted by the blue ribbon.

4.5 Final Phases
After the completion of the middle phases the cycle C has w.h.p. at least n − 3 log n nodes. At
that point the expected number of nodes v ∈ V \ C that send an invitation I2 becomes too low
to complete the cycle. Therefore, the integration of the remaining nodes requires a more complex
integration procedure as depicted in Fig. 2. The procedure of the final phases is as follows. Each
node v ∈ V \ C with identifier id sends a message I1(id) to each of its neighbors. A node w1 ∈ C
that receives a message I1(id) sends a message I2(id) to its neighbor w2 on C in clockwise order. If
w2 also received a message I1(id) (with the same id), then nodes w1, w2 and the initiating node v
with identifier id form a triangle. Then v can be directly integrated into C as done in the middle
phases. In this case w1 asks v to initiate the integration step.

Otherwise, if node w2 did not receive a message I1(id), then it sends a message I3(id) to all
neighbors that are on C. If a node w3 on C that receives this message I3(id) also received a message
I2(id) from its predecessor w4 on C, then node v can be integrated into C as shown in Fig. 2. This
is achieved by replacing edges (w1, w2) and (w4, w3) from C by edges (w1, v), (v, w4), and (w2, w3).
Also, the edges on the segment from w2 to w4 must be traversed in opposite order, note that the
number of nodes between w2 and w4 is not bounded. A naive explicit reversing of the order of the
edges on the middle segment may require more than O(log n) rounds. Thus, we propose a different
approach.

Apart from the reversal of the edges in the middle segment this integration can be implemented
within five rounds. Node w3 informs v about this integration possibility, this notification also includes
the identifiers of nodes w4 and w2. Furthermore, the participating nodes w4, w2 and w1 are also
informed. The approach to invert the middle segment in a constant number of rounds is explained
below.

5

w3

w4

w2

w1
……

v

I1 I1

I2

I2

I3

Figure 2: The integration of node v into C during the final phase. The thin red arrows indicate the
flow of the messages I1, I2, and I3 initiated by v. The extended cycle is depicted by the blue ribbon.
The edges (w1, w2) and (w4, w3) are replaced by the edges (w1, v), (v, w4), and (w2, w3). The order
of the edges between w4 and w2 is reversed.

Unfortunately there is another issue. While each node outside C can be integrated individually,
these integration steps cannot be executed concurrently. A problem arises if the segments, which are
inverted (e.g. from w2 to w4), overlap. This can result in two separate cycles as shown in Fig. 3.
Even if the integration of the remaining nodes is performed sequentially, a problem appears if the
reversal of the middle segment is not made explicit. In this case the nodes that receive an I1 message
may not have a consistent view with respect to the clockwise order of C.

w1
w2

w3

w4

w5

w6

w7

w8 ……

v1 v2

Figure 3: The depicted scenario shows that the integration of two nodes with overlapping segments
cannot be performed concurrently as this would lead to two cycles (shown in green and blue). If v2

would be integrated first, then v1 can no longer be integrated, since the predecessor of w6 is then w5

which is not connected to w3.

The solution to the problem of interfering concurrent integrations is to serialize all integration
steps. For this purpose node v0 acts as a coordinator. In each of the final phases each node v outside
C first checks if can be integrated using the above described sequence of messages I1 to I3. If this
is the case then v randomly selects one of these possibilities and informs v0. This message includes
information about the four nodes on C that characterize the integration (see below for details). Node
v0 selects among all offers a single node v and informs it. Upon receiving the integration order, a
node v initialize the integration which is completed after fives rounds. Then the integration of the
next node can start.

The solution for the second problem – the reversal of the segment – is based on an ascending
numbering of the nodes. Such a numbering can easily be established in the first and middle phases.
During phases 0 and 1 the nodes are numbered as follows: Node v0 has number 0. In clockwise order

6

the nodes have numbers n14, 2n14, 3n14, . . ., βn14 for some integer constant β ≤ d4 log ne. Thus, the
difference between two consecutive nodes is n14. During the middle phases when a node v is integrated
into C between two nodes with numbers f < l the integrated node gets the number d(f + l)/2e. This
is an integer strictly between f and l as long as |f− l| ≥ 2. If a node is integrated between v0 and the
node with the highest number y, the new number is y+ d(β + 1)n/2e. It is straightforward to verify
that all numbers are different and are ascending along the cycle beginning with v0. The choice of
the initial numbers guarantees that the difference of the numbers of two consecutive nodes is always
at least 2.

In case a node v is integrated during the final phase it gets the number d(n1 +n2)/2e as if it would
be inserted between w1 and w2 with numbers n1 and n2 (see Fig. 2). The numbers of the nodes
between w2 and w4 need to be updated such that overall the numbers are ascending. When a node
can be integrated it includes in the notification message to v0 the numbers of the end nodes of the
segment that would be reversed if this node is integrated, i.e., the numbers of w2 and w4 (referred to
as f and l in the following). Afterwards, when v0 informs the selected node it distributes a message
to all nodes in the network that also includes the numbers f and l. A node receiving this message
checks if its own number x is between f and l. In this case it changes its number to f + l− x. Thus,
the numbers of the nodes in the segment are reflected on the mid point of the segment (see Fig. 4).
Each node that changes its number also updates it next pointer to the other neighbor on C. Also
nodes v, w1, and w2 update their next pointer.

260
250

229 220 200 160 144 124
112 100

……

v

260
250

124 133 153 193 209 229
112 100

……

v
118

Figure 4: Node v is to be integrated into C. The nodes w1 and w2 have the numbers f = 124 and
l = 229. Node v will receive number d(112 + 124)/2e = 118. Upon receiving the message form node
v0, nodes with a number between 124 and 229 change their numbers. The left sides shows the old
numbers and the right side the new numbers.

This procedure results in a cycle including v with a numbering that is consistent with the orien-
tation. Thus, when the integration phase of the next node starts, cycle C is in a consistent state. To
carry out this phase a short route from each node to v0 and vice versa is needed. This is provided
by the BFS tree constructed in the pre-processing phase: Each node reaches v0 in at most 3 hops.

7

Thus, each final phase lasts 11 rounds.

5 Analysis of Algorithm AHC

This section proves the correctness and analyzes the complexity of the individual phases and proves
the main theorem. First, we prove that AHC produces the numbering that guarantees that the final
phases work correctly. Afterwards the individual phases are analyzed. Some of the results are proved
for values of p less than (log n)3/2/

√
n to make them more general.

Lemma 1. At the end of each phase each node has a different number and the numbers are ascending
beginning with number 0 for node v0 in clockwise order.

Proof. After phase 1 starting with node v0 the nodes have the numbers n14, 2n14, 3n14, . . ., βn14, i.e.,
the difference between the numbers of two neighboring nodes on C is n14. A node v that is inserted
between two nodes with integral numbers x and y in middle phase gets the number d(x + y)/2e.
Let x < y. If x + y is even then |x − d(x + y)/2e| = |y − d(x + y)/2e| = d/2. If x + y is odd then
|x − d(x + y)/2e| = (d + 1)/2 and |y − d(x + y)/2e| = (d − 1)/2. This yields that the distance d
between two consecutive numbers is approximately at most cut in half, i.e., the smaller part is at
least (d− 1)/2. After i middle phases the distance between to numbers is at least

d

2i
−
(

1− 1

2i

)
(1)

Since there are 16 log n middle phases the distance between two numbers is n14/216 logn − (1 −
1/216 logn) > 2(3 logn)+1. This implies that after the middle phases the numbering of the nodes
satisfies the stated condition.

Let v be a node that is inserted in a final phase into C. Assume that the smallest distance between
the numbers of two consecutive nodes on C is at least 2. Consider Fig. 2 for reference. Let f (resp.
l) the number of w1 (resp. w3) at the beginning of the corresponding final phase. Denote the nodes
between w2 and w4 by w′1, . . . , w′k with w2 = w′1 and w4 = w′k. Furthermore, let n′1, . . . , n′k be the
numbers of these nodes. Thus,

f < n′1 < . . . < n′k < l

The order of these nodes on C at the end of the phase will be w1, v, w
′
k, . . . , w

′
1, w3. Denote by ni

the new number of node w′i, i.e., ni = n′1 + n′k − n′i. Thus, we need to prove

f < d(f + n′1)/2e < nk < nk−1 < . . . < n1 < l

Since n′1 > f + 1 it follows f < d(f + n′1)/2e and since nk = n′1 + n′k − n′k = n′1 > f + 1 it follows
d(f + n′1)/2e < nk. Furthermore, n′i < n′i+1 implies ni+1 = n′1 + n′k − n′i+1 < n′1 + n′k − n′i = ni.
Finally, n1 = n′1 + n′k − n′1 = n′k < l.

As shown above at the end of the middle phases d > 2(3 logn)+1. Hence, after the last of the
3 log n final phases we have d > 1 by equation (1). Thus, the numbers of all nodes are different and
ascending.

The challenge in proving properties of iterative algorithms on random graphs is to organize the
proof such that one only slowly uncovers the random choices in the input graph while constructing
the desired structure, e.g., a Hamiltonian cycle. This is done in order to cleanly preserve the needed
randomness and independence of events that establish the correctness proof. The coupling technique
is well know to solve this problem ([10], p. 5). For γ ∈ N let p̂ = 1 − (1 − p)1/γ logn. Then
p = 1− (1− p̂)γ logn. Thus G(n, p) is equal to the union of γ log n independent copies of G(n, p̂). For
p = (log n)3/2/

√
n we have(

1−
√

log n

γ
√
n

)γ logn

= e((logn)3/2/
√
n) log(1−

√
logn/γ

√
n)γ
√
n/
√

logn ≥ e−(logn)3/2/
√
n ≥ 1− (log n)3/2

√
n

8

hence p̂ ≥
√

log n/γ
√
n and thus,

γ logn⋃
i=1

G(n,
√

log n/γ
√
n) ⊆ G(n, p).

We superimpose γ log n independent copies of G(n,
√

log n/γ
√
n) and replace any double edge which

may appear by a single one. In the following proof in each phase we will uncover a new copy of
G(n,

√
log n/γ

√
n). There will be 21 log n phases, thus γ = 21. We set q =

√
log n/γ

√
n for the rest

of this paper. All but the final phases also work for values of p slightly smaller than (log n)3/2/
√
n

and thus smaller values of q (i.e., q = 1/γ
√
n for p = log n/

√
n). This is reflected in the following

proofs.
For i ≥ 0 let Gi be the union of i independent copies of G(n, q). In phase i the constructed cycle

C consists of edges belonging to Gi. The subsequent proofs use the following fact: The probability
that any two nodes of V are connected with an edge from Gi+1 \Gi is q. Thus, in each phase a new
copy of G(n, q) is revealed. In each phase we consider the nodes outside C. For each such node we
consider unused edges incident to it, each of those exist with probability q independent of the choice
of C, because C consist of edges of other copies of G(n, q). Some of these unused edges may also
exist in Gi, but that does not matter.

5.1 Phase 0
Phase 0 sequentially builds a path P by randomly choosing a node to extend P . Even for p = log n/n
this allows to build paths of length Ω(

√
n) in time proportional to the length of P . Since we aim at a

runtime of O(log n) the following lemma suffices to prove that w.h.p. phase 0 terminates successfully.

Lemma 2. If q ≥ log n/γn phase 0 completes w.h.p. after 3 log n rounds with a path of length 3 log n.

Proof. The probability that an end node of P does not receive a response is equal to at least (1−q)n−c,
where c is the number of nodes already in P . Thus, the probability to find a path of length 3 log n is

3 logn∏
x=1

(1− (1− q)n−x) ≥ (1− (1− q)n−3 logn)3 logn.

By Lemma 12 (see Appendix) limn→∞(1− (1− q)n−3 logn)3 logn = 1, this proves the lemma.

5.2 Phase 1
Phase 1 sequentially tries to extend P into a cycle C in at most 3 log n rounds.

Lemma 3. If q ≥ 1/γ
√
n phase 1 finds w.h.p. in 3 log n rounds a cycle with at most 4 log n nodes.

Proof. By considering only the edges of the fresh copy of G(n, q) we note that the probability that
path P cannot be closed into a cycle within 3 log n rounds is at most

logn−1∏
i=0

(1− q2)n−3 logn−i = (1− 1

n
)S

with

S =

logn−1∑
i=0

n− 3 log n− i = log n (n− log n− (log n− 1)/2)) .

By Lemma 14 (1− 1/n)S approaches 0 as n goes to infinity. This completes the proof.

9

5.3 Middle Phases
The middle phases contribute the bulk of nodes towards a Hamiltonian cycle. In each phase the
number of nodes is increased by a constant factor w.h.p. by concurrently testing all edges in C for
an extension. In the following we prove a lower bound for the number of nodes that are integrated
w.h.p. into C in a middle phase. This will be done in two steps. First we state a lower bound for the
number of nodes v ∈ V \C that send an invitation I2. Based on this bound we prove a lower bound
for the number of nodes that received an acceptance message I3. Note that each node v ∈ V \C that
receives an acceptance message I3 is integrated into C and each v ∈ V \ C receives at most one I3
message.

Let c = |C| and v ∈ V \ C. The event that an edge e of C together with v forms a triangle
has probability q2. Unfortunately these events are not independent in case the edges have a node
in common. To have a lower bound for the probability that v is connected to at least one pair
of consecutive nodes on C we consider only every second edge on C. Denote the edges of C by
e0, . . . , ec−1 with ei = (vi, ui). Let πv,i be the event that node v forms a triangle with edge e2i such
that the edges (v, vi) and (v, ui) belong to newly uncovered copy of G(n, q). For fixed v the events
πv,i are independent and each occurs with probability q2. Let πv be the event that for node v ∈ V \C
at least one of the events πv,0, πv,2, πv,4, . . . , πv,c occurs. Clearly the events πv are independent and
each occurs with probability 1− (1− q2)c/2.

For v ∈ V \C letXv be a random variable that is 1 if event πv occurs. The variablesXv1 , . . . , Xvn−c

are independent Bernoulli-distributed random variables. Define a random variable X as

X =
∑

v∈V \C

Xv.

Then we have
E[X] = (n− c)(1− (1− q2)c/2). (2)

Obviously X is a lower bound for the number of nodes of V \ C that are connected to at least one
pair of consecutive nodes on C, i.e., the number of nodes v ∈ V \ C that sent an invitation I2.

Next let Y be a random variable denoting the number of nodes of V \C that receive an acceptance
message I3 provided that X = x nodes sent an invitation I2. We compute the conditional expected
value E[Y |X = x]. The computation of Y can be reduced to the urns and balls model: The number
of balls is x and the number of bins is c. Each ball is thrown randomly in any of the c bins. Note
that the probability that a node v in C is connected to a node w in V \ C is independent of v and
w at least q. Thus, Y is equal to the number of nonempty bins and hence

E[Y |X = x] = c

(
1−

(
1− 1

c

)x)
. (3)

Note that for a given value of x variable Y is the number of nodes inserted into C in one phase. Y/c
is the ratio of the number of newly inserted nodes to the number of nodes in C. The next subsections
give a lower bound for Y/c that holds w.h.p. We distinguish the cases x ≥ n/7 and x < n/7. The
reason is that the variance of X behaves differently in these two ranges: For x < n/7 the variance
is rather large, whereas for x ≥ n/7 the variance tends to 0. In both cases we first compute a lower
bound for X and then derive a lower bound for Y/c with respect to the bound for X.

Instead of using q =
√

log n/γ
√
n the analysis of the middle phases is done for the smaller value

q = 1/
√
n. This saves us from using the constant γ and simplifies the exposition of the proofs.

5.4 The case c < n/7

Next we prove that while c < n/7 in each middle phase the number of nodes in C is increased by a
factor of 2− e−1/3 and that after 3 log n phases the bound n/7 is exceeded.

Lemma 4. Let 3 log n < c < n/7. Then there exists d > 0 such that X > c/3 with probability
1− 1/nd.

10

Proof. From equation (2) and Lemma 11 (see Appendix) it follows that

E[X] = (n− c)(1− (1− q2)c/2) > c/3 > log n.

Thus, c/(3E[X]) < 1 for 3 log n < c < n/7. Also, c/(3E[X]) is strictly monotonically increasing in
this range for fixed n. Furthermore, for fixed n we have

lim
c→n/7

c

3E[X]
=

1

18(1− e−1/14)
< 0.81.

Thus, for c in the specified range

lim
n→∞

(1− c/(3E[X]))
2
> 0.037.

Let δ = 1− c/(3E[X]). Then 0 < δ < 1 and we have

E[X]δ2 = E[X] (1− c/(3E[X]))
2 ≥ 0.037 log n

for 3 log n < c < n/5. Hence, e−E[X]δ2/2 ≤ 1/n0.037/2. The Chernoff bound (Lemma 15) yields that

X > (1− δ)E[X] =

(
1− 1 +

c

3E[X]

)
E[X] = c/3

with probability at least 1− 1/n0.037/2.

Lemma 5. Let β = 0.92 and 3 log n < c < n/7. Then there exist d > 0 such that Y
c ≥ β

(
1− 1

e1/3

)
with probability 1− 1/nd.

Proof. From equation (3) it follows

E[Y |X ≥ c/3] ≥ c
(

1− (1− 1

c
)c/3

)
.

Let δ2 = 3α log n/c with α = (1− β)2. Then δ2 < 1 and

e−E[Y |X≥c/2]δ2/3 ≤ e−3α logn(1−(1−1/c)c/3)/2 =

(
1

n

)3α(1−(1−1/c)c/3)/2

.

The Chernoff bound (Lemma 15) implies that

Y |(X ≥ c/3) > (1− δ)E[Y |X ≥ c/3] ≥

(
1−

√
3α log n

c

)
c(1− (1− 1

c
)c/3)

with probability 1− 1/n3α(1−(1−1/c)c/3)/2. Hence, by Lemma 4 there exists d > 0 such that

Y ≥

(
1−

√
3α log n

c

)
c(1− (1− 1

c
)c/3)

with probability 1− 1/nd. This gives for any c ≥ 3 log n

Y

c
=

(
1−

√
3α log n

c

)
(1− (1− 1

c
)c/3) ≥ β(1− 1

e1/3
).

Lemma 6. Let C be a cycle with at least 3 log n nodes. Then after at most 3 log n phases C has
w.h.p. at least n/7 nodes.

Proof. Lemma 5 yields that while the circle has less than n/7 nodes w.h.p. in i phases the number
of nodes in C grows from c to (1 + β(1− 1

e1/3
))ic, i.e., in three phases to (1 + 0.92(1− 1

e1/3
))3c > 2c,

i.e., it doubles at least every three phases. Hence, starting with c = 3 log n, after at i phases C
has at least 2i/33 log n nodes. Note that 2i0/33 log n ≥ n/7 for i0 = 3 log (n/(21 log n)) / log 2. Since
3 log n ≥ i0, the union bound implies that after at most 3 log n phases w.h.p. the circle has at least
n/7 nodes.

11

5.5 The case c ≥ n/7

Next we show that the size of C is still growing by a constant factor, but the factor is decreasing in
each phase. This allows to infer that after 13 log n phases w.h.p. C has at least n − 3 log n nodes.
Let c = ξn and

Ξ =

(
1−

√
3 log n

n(1− ξ)

)
c(1/ξ − 1)(1− (1− q2)c/2).

Lemma 7. Let c = ξn with 1/7 ≤ ξ < 1− 3(log n)/n. Then there exists d > 0 such that X > Ξ with
probability 1− 1/nd.

Proof. Let δ2 = 3 log n/(n − c). Then 0 < δ < 1. From equation (2) and the Chernoff bound
(Lemma 15) it follows

Prob[X ≤ (1− δ)E[X]] ≤ e−E[X]δ2/2 = e−3 logn(1−(1−q2)c/2)/2 = 1/n3(1−(1−q2)c/2)/2.

Note that c ≥ n/7 implies cq2/2 = ξ/2 ≥ 1/14 and hence (1 − q2)c/2 ≤ e−ξ/2 by Lemma 14. Thus,
Prob[X ≤ (1− δ)E[X]] ≤ 1/n3(1−e−ξ/2)/2. Since (1− δ)E[X] = Ξ this yields the result.

Note that this Lemma proves that w.h.p. in each phase there exists at least one node that can be
used to extend the cycle as long as c < n− 3 log n holds.

Lemma 8. Let c = ξn with 1/7 ≤ ξ < 1 − 3(log n)/n. Then there exists d > 0 such that Y
c ≥(

1−
√

3 logn
n(1−ξ)

)(
1− e(1−1/ξ)(1−e−ξ/2)

)
with probability 1− 1/nd.

Proof. From equation (3) it follows

E[Y |X ≥ Ξ] ≥ c
(
1− (1− 1/c)Ξ

)
.

Since limn→∞(1− q2)c/2 = e−ξ/2 by Lemma 14 it follows

lim
n→∞

Ξ

c
≥ lim
n→∞

(
1−

√
3 log n

n(1− ξ)

)(
1

ξ
− 1

)
(1− e−ξ/2) =

(
1

ξ
− 1

)
(1− e−ξ/2)

and therefore by Lemma 14

E[Y |X ≥ Ξ]/c = (1− (1− 1/c)Ξ) ≥ 1− e(1−1/ξ)(1−e−ξ/2) > 0.

Next let δ2 = 3 log n/c. Then

e−E[Y |X≥Ξ]δ2/2 ≤ e−3 logn(1−e(1−1/ξ)(1−e−ξ/2))/2 =

(
1

n

)3(1−e(1−1/ξ)(1−e−ξ/2))/2

.

Hence, the Chernoff bound implies that with probability 1− 1/n3(1−e(1−1/ξ)(1−e−ξ/2))/2

Y (X ≥ Ξ) > (1− δ)E[Y |X ≥ Ξ] ≥

(
1−

√
3 log n

c

)
c(1− (1− 1

c
)Ξ).

The result follows from Lemma 7.

Lemma 9. Let p ≥ log n/
√
n and C be a cycle with at least n/7 nodes. Then after 13 log n phases

C has w.h.p. at least n− 3 log n nodes.

12

Proof. If c = ξn ≥ n/7 then by Lemma 8 w.h.p. in one phase the number of nodes in C grows
from ξn to (1 + ρ(1 − e(1−1/ξ)(1−e−ξ/2)))ξn, where ρ can be arbitrary close to 1. Thus, w.h.p. the
number of nodes strictly increase per round, but the increase decreases. For example the size of C
grows in three rounds from n/7 to 0.191n to 0.252n. Let f(c) = (2− e(1−1/c)(1−1/ec/2))c. Note that
f(c) ≥ ax+ b for c ∈ (1/5, 1), a = (1− f(1/5))/0.8 ≈ 0.92085, and b = 1−a ≈ 0.07914. Let c0 = 1/5

and ci = (2− e(1−1/ci−1)(1−1/eci−1/2)

)ci−1. Thus,

ci ≥ aci−1 + b ≥ a2ci−2 + ab+ b ≥ . . . ≥ ai(c0 − 1) + 1.

Lemma 8 yields that after another i rounds C contains at least ci n ≥
(
ai(c0 − 1) + 1

)
n nodes. Let

α such 1 + α log a < 0, e.g., α = 13. Hence, for larger values of n we have cα logn ≥ 1 − 4
5a
α logn =

1− 4
5n

α log a ≥ 1− 3 logn
n . Thus, c13 logn n ≥ n−3 log n. The lemma follows from the union bound.

5.6 Final Phases
After the middle phases w.h.p. there are at most 3 log n nodes outside C. The following lemma proves
the correctness of the final phases.

Lemma 10. If p ≥ (log n)3/2/
√
n the final 3 log n phases integrate w.h.p. all remaining nodes into

C.

Proof. Let v ∈ V \C be a fixed node. As before, we only consider edges incident to v that belong to
a fresh copy of G(n, q). Let the random variable X denote the number of neighbors of v on C. If C
consists of c nodes then E[X] ≥ c

γ

√
log n/n. Let δ2 = 2

√
n
c . Then δ2 < 1 and limn→∞E[X]δ2/2 ≥

limn→∞
√

log n/γ =∞. Now the Chernoff bound implies that w.h.p.

X ≥

(
1−

√
2
√
n

c

)
(n− 3 log n)

√
log n

γ
√
n

.

For i = n− 3 log n, . . . n− 1 let

Xi =

(
1−

√
2
√
n

i

)
(n− 3 log n)

√
log n

γ
√
n

Now, by the union bound, the probability that the final phases do not integrate all remaining 3 log n
nodes is at most

n−1∑
i=n−3 logn

(
1− 1

γ

√
log n

n

)Xi(Xi+1)
√

logn

2
√
n

≤ 3 log n

(
1− 1

γ

√
log n

n

) (Xn−3 logn)2
√

logn

2
√
n

.

Lemma 13 (see Appendix) shows that this term converges to 0.

6 Proof of Theorem 1
The pre-processing phase lasts 9 rounds. By Lemma 2 and 3 phases 0 and 1 terminate after O(log n)
rounds w.h.p. with a cycle with at most 4 log n nodes. Each middle phase lasts a constant number
of rounds. According to Lemma 6 after at 3 log n middle phases the cycle C has w.h.p. n/7 nodes
and by Lemma 9 after another 13 log n middle phases w.h.p. n− 3 log n nodes. Then in 3 log n final
phases, each lasting a constant number of rounds, C is w.h.p. a Hamiltonian cycle by Lemma 10.
This leads to the total time complexity of O(log n) rounds. The statements about message size and
memory per node are evident from the description of AHC.

13

7 Conclusion
This paper presented an efficient distributed algorithm to compute in O(log n) rounds w.h.p. a
Hamiltonian cycle for a random graph G(n, p) provided p ≥ (log n)3/2/

√
n. This constitutes a large

improvement over the state of the art with respect to p = c log n/nδ (0 < δ ≤ 1) and run time Õ(nδ).
It is well known that G(n, p) contains w.h.p. a Hamiltonian cycle, provided p ≥ pcrit. There is a
large gap between (log n)3/2/

√
n and pcrit. It appears that by maxing out the arguments of this

paper it is possible to prove Theorem 1 for p =
√

log n/n. All but the final phases already work for
p ≥ log n/

√
n. We suspect that finding a distributed O(log n) round algorithm for p ∈ o(1/

√
n) is a

hard task.

8 Acknowledgments
This work is supported by the Deutsche Forschungsgemeinschaft (DFG) under grant DFG TU 221/6-
2. The author is grateful to the reviewers’ valuable comments that improved the manuscript.

References
[1] D. Angluin and L. Valiant. Fast probabilistic algorithms for hamiltonian circuits and matchings.

Journal of Computer and System Sciences, 18(2):155–193, 1979.

[2] B. Bollobás. The diameter of random graphs. Transactions of the American Mathematical
Society, 267(1):41–52, 1981.

[3] B. Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.

[4] B. Bollobás, T. I. Fenner, and A. M. Frieze. An algorithm for finding hamilton paths and cycles
in random graphs. Combinatorica, 7(4):327–341, 1987.

[5] S. Chatterjee, R. Fathi, G. Pandurangan, and N. Dinh Pham. Fast and efficient distributed
computation of hamiltonian cycles in random graphs. arXiv preprint arXiv:1804.08819, 2018.
To appear in ICDCS 2018.

[6] F. Chung and L. Lu. The diameter of sparse random graphs. Advances in Applied Mathematics,
26(4):257 – 279, 2001.

[7] P. Erdős and A. Rényi. On random graphs I. Publicationes Mathematicae (Debrecen), 6:290–297,
1959.

[8] M. Franceschelli, A. Giua, and C. Seatzu. Quantized consensus in hamiltonian graphs. Auto-
matica, 47(11):2495–2503, 2011.

[9] A. Frieze. Parallel algorithms for finding hamilton cycles in random graphs. Inf. Process. Lett.,
25(2):111 – 117, 1987.

[10] A. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University Press, 2015.

[11] A. M. Frieze and S. Haber. An almost linear time algorithm for finding hamilton cycles in sparse
random graphs with minimum degree at least three. Random Struct. Algorithms, 47(1):73–98,
2015.

[12] J. Hélary and M. Raynal. Depth-first traversal and virtual ring construction in distributed
systems. Research Report RR-0704, IRISA–Institut de Recherche en Informatique et Systèmes
Aléatoires, INRIA Rennes, 1987.

14

[13] J. Kim and R. Srikant. Peer-to-peer streaming over dynamic random hamilton cycles. In 2012
Information Theory and Applications Workshop, pages 415–419, Feb 2012.

[14] J. Komlós and E. Szemerédi. Limit distribution for the existence of hamiltonian cycles in a
random graph. Discrete Mathematics, 43(1):55–63, 1983.

[15] M. Krivelevich, K. Panagiotou, M. Penrose, and C. McDiarmid. Random Graphs, Geometry and
Asymptotic Structure. London Mathematical Society Student Texts (84). Cambridge University
Press, Cambridge, UK, 2016.

[16] K. Krzywdziński and K. Rybarczyk. Distributed algorithms for random graphs. Theoretical
Computer Science, 605:95–105, 2015.

[17] E. Levy, G. Louchard, and J. Petit. A distributed algorithm to find hamiltonian cycles in
G(n, p) random graphs. In Proc. First Int. Conf. on Combinatorial and Algorithmic Aspects of
Networking, pages 63–74. Springer, 2005.

[18] P. D. MacKenzie and Q. F. Stout. Optimal parallel construction of hamiltonian cycles and
spanning trees in random graphs. In Proc. Fifth Annual ACM Symposium on Parallel Algorithms
& Architectures, pages 224–229, New York, 1993.

[19] D. Malkhi, S. Sen, K. Talwar, R. Werneck, and U. Wieder. Virtual ring routing trends. In Proc.
23rd International Symposium on Distributed Computing, DISC’09, pages 392–406. Springer,
2009.

[20] D. Peleg. Distributed computing: a locality-sensitive approach. Monographs on Discrete Math-
ematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[21] L. Pósa. Hamiltonian circuits in random graphs. Discrete Mathematics, 14(4):359–364, 1976.

[22] M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for distributed optimization.
IEEE Journal on Selected Areas in Communications, 23(4):798–808, 2005.

[23] E. Shamir. How many random edges make a graph hamiltonian? Combinatorica, 3(1):123–131,
1983.

[24] C. Sommer and S. Honiden. On agent-friendly aggregation in networks (short paper). In
Workshop 15: Agent Technology, page 75, 2008.

[25] A. Thomason. A simple linear expected time algorithm for finding a hamilton path. Discrete
Mathematics, 75(1):373–379, 1989.

[26] V. Turau and G. Siegemund. Scalable Routing for Topic-based Publish/Subscribe Systems
under Fluctuations. In Proc. 37th International Conference on Distributed Computing Systems,
ICDCS’17, 2017.

The appendix is divided in two sections. The first section contains technical results which did not
fit into the paper due to space restrictions. The second section contains well known results without
stating a proof, these are included to make the paper self-contained.

A Technical Lemmas
Lemma 11. There exists n0 > 0 such that (n − c)(1 − (1 − 1

n)c/2) > c/3 for all 0 < c < n/7 and
n ≥ n0.

15

Proof. Obviously it suffices to prove

log

(
3n− 4c

3(n− c)

)
>
c

2
log

(
1− 1

n

)
. (4)

The derivative of the left side (considering n as a constant) is

−n
(3n− 4c)(n− c)

This is larger than (1/2) log
(
1− 1

n

)
, the derivative of the right side of equation (4), in the range

(0, d] for some d > 0. Then, at least until the derivatives of both sides are equal, equation (4) is
satisfied. The solution c0 of the equation

−n
(3n− 4c)(n− c)

=
1

2
log

(
1− 1

n

)
is

c0 =
n

8

(
7−

√
1− 32

n log
(
1− 1

n

)) .
Using the rule of L’Hôpital we have limn→∞ n log

(
1− 1

n

)
= −1 This implies that for growing n the

value of c0 approaches n(7−
√

33)/8 ≥ 0.156n. Thus for some n we have c0 ≥ n/7. This proves the
lemma.

Lemma 12. Let α, β > 1. For q ≥ log n/γn

lim
n→∞

(1− (1− q)n−β logn)α logn = 1.

Proof. Since limn→∞(1− q)n−β logn = 0, hence by Lemma 14 we have

lim
n→∞

(1− (1− q)n−β logn)α logn = lim
n→∞

eα logn log(1−(1−q)n−β logn) = lim
n→∞

e−α logn(1−q)n−β logn

.

Thus, it suffices to prove limn→∞ e−α logn(1−q)n−β logn

= 1. limn→∞ log n/n = 0 implies

lim
n→∞

log(α log n/n) = −∞.

Thus, limn→∞− log n+ log(α log n) = −∞ and hence

lim
n→∞

− log n+
β log2 n

n
+ log(α log n) = −∞

lim
n→∞

−(log n/γn) (n− β log n) + log(α log n) = −∞

Since limn→∞ log(1− q)/q = −1 this yields

lim
n→∞

(n− β log n) log(1− q) + log(α log n) = −∞

lim
n→∞

log
(
α log n(1− q)n−β logn

)
= −∞

lim
n→∞

α log n(1− q)n−β logn = 0

lim
n→∞

e−α logn(1−q)n−β logn

= 1.

16

Lemma 13.

lim
n→∞

log n

(
1− 1

γ

√
log n

n

) (Xn−3 logn)2
√

logn

2
√
n

= 0.

Proof. Since

lim
n→∞

1−

√
2
√
n

n− 3 log n

2

(n− 3 log n)2

2γ

(
log n

n

)1.5
1√
n

=∞

we have

log n

(
1− 1

γ

√
log n

n

)(1−
√

2
√
n

n−3 logn

)2
(n−3 logn)2

2γ (logn
n)

1.5

< log n

(
1− 1

γ

√
log n

n

)√n
The last term is equal to

log n e(
√

logn/γ) log(1− 1
γ

√
logn
n)/
√

logn
n ≤ log n/e(

√
logn/γ).

This proves the lemma.

B Well Known Results
Lemma 14. Let fn and pn be sequences with limn→∞ pn = 0.

1. limn→∞ log(1− pn)/pn = −1.

2. If limn→∞ pnfn = c then limn→∞(1− pn)fn = e−c.

3. If limn→∞ pnfn =∞ then limn→∞(1− pn)fn = 0.

Lemma 15 (Chernoff Bound). Let X1, . . . , Xn be independent Bernoulli-distributed random variables
and X =

∑n
i=1Xi with µ = E[X]. Then for all 0 < δ ≤ 1

Prob[X ≤ (1− δ)µ] ≤ e−µδ
2/2.

Lemma 16. Let G(n, p) with p ≥
√

1/n. Then w.h.p. diam(G) ≤ 3.

Proof. According to Corollary 8 (i) of [2] w.h.p. diam(G) = 3 if

• (log n)/3− 3 log log n converges to ∞

• p3n2 − 2 log n converges to ∞

• p2n− 2 log n converges to −∞

This is satisfied for p =
√

1/n.

17

	1 Introduction
	1.1 Related Work

	2 Computational Model and Assumptions
	3 Informal Description of Algorithm AHC
	4 Formal Description
	4.1 Pre-processing
	4.2 Phase 0
	4.3 Phase 1
	4.4 Middle Phases
	4.5 Final Phases

	5 Analysis of Algorithm AHC
	5.1 Phase 0
	5.2 Phase 1
	5.3 Middle Phases
	5.4 The case c< n/7
	5.5 The case cn/7
	5.6 Final Phases

	6 Proof of Theorem ??
	7 Conclusion
	8 Acknowledgments
	A Technical Lemmas
	B Well Known Results

