Skip to main content

Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree

  • Conference paper
  • First Online:
Book cover Structural Information and Communication Complexity (SIROCCO 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11085))

Abstract

Mobile agents are deployed at selected nodes of an edge-weighted tree network. Each agent originally possesses an amount of energy, possibly different for all agents. Initially, in a given source node of the network is placed a piece of information (data packet) that must be broadcast to all other nodes. Such transfer of the packet needs to be achieved with aid of collaborating mobile agents, which may transport copies of the packet to all nodes.

Agents travel in the network spending energy proportionally to the distance traversed. They can stop only at network nodes. If two agents are present at a node at the same time, they can exchange any amount of currently possessed energy. Our goal is to verify if there exists a sequence of agents’ movements (a schedule) and energy exchanges between meeting agents, which results in the packet reaching all nodes of the tree network.

Our algorithm produces an optimal centralized scheduler as we assume that the central authority knows everything about the network and controls the movement of the agents, which do not need to possess any knowledge. In this sense it is a semi-distributed algorithm.

The important part of our algorithm uses dynamic programming in order to compute an optimal agents migration flow of every edge of the network, i.e. the number of agents traversing every edge in each direction. The approach is far from being straightforward, as its correctness is based on multiple complex interactions between the subtrees obtained by removal of any given edge.

It is known that, if energy exchange is not allowed, the broadcasting problem for trees (even for lines) is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting information by power-aware mobile agents. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 46–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_4

    Chapter  Google Scholar 

  2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)

    Article  MathSciNet  Google Scholar 

  3. Awerbuch, B., Goldreich, O., Peleg, D., Vainish, R.: A trade-off between information and communication in broadcast protocols. J. ACM 37(2), 238–256 (1990)

    Article  MathSciNet  Google Scholar 

  4. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On tree-based convergecasting in wireless sensor networks. IEEE Wirel. Commun. Netw. 3, 1942–1947 (2003)

    Google Scholar 

  5. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discr. Appl. Math. 68, 17–32 (1996)

    Article  Google Scholar 

  6. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Geissmann, B., Graf, D., Labourel, A., Mihalák, M.: Collaborative delivery with energy-constrained mobile robots. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 258–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_17

    Chapter  Google Scholar 

  7. Bärtschi, A., Chalopin, J., Das, S., Disser, Y., Graf, D., Hackfeld, J., Penna, P.: Energy-efficient delivery by heterogeneous mobile agents. In: STACS , pp. 10:1–10:14 (2017)

    Google Scholar 

  8. Bärtschi, A.: Efficient Delivery with Mobile Agents (Ph.D. thesis), ETH Zurich (2017)

    Google Scholar 

  9. Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5, 143–154 (1995)

    Article  MathSciNet  Google Scholar 

  10. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in multi-hop radio networks: an exponential gap between determinism and randomization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

    Article  MathSciNet  Google Scholar 

  11. Chalopin, J., Jacob, R., Mihalák, M., Widmayer, P.: Data delivery by energy-constrained mobile agents on a line. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 423–434. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7_36

    Chapter  Google Scholar 

  12. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Energy-optimal broadcast in a tree with mobile agents. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 98–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_8

    Chapter  Google Scholar 

  13. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Communication problems for mobile agents exchanging energy. In: Suomela, J. (ed.) SIROCCO 2016. LNCS, vol. 9988, pp. 275–288. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48314-6_18

    Chapter  MATH  Google Scholar 

  14. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_25

    Chapter  Google Scholar 

  15. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/11682127_24

    Chapter  Google Scholar 

  16. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24698-5_18

    Chapter  Google Scholar 

  17. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  18. Toth, P., Vigo, D.: Vehicle Routing. Problems, Methods and Applications. MOS-SIAM series on Optimization, 2nd edn. (2014)

    Google Scholar 

Download references

Acknowledgment

The work of K. Diks and W. Rytter was supported by National Science Centre of Poland grant NCN2014/13/B/ST6/00770. The work of J. Czyzowicz was supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurek Czyzowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czyzowicz, J., Diks, K., Moussi, J., Rytter, W. (2018). Broadcast with Energy-Exchanging Mobile Agents Distributed on a Tree. In: Lotker, Z., Patt-Shamir, B. (eds) Structural Information and Communication Complexity. SIROCCO 2018. Lecture Notes in Computer Science(), vol 11085. Springer, Cham. https://doi.org/10.1007/978-3-030-01325-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01325-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01324-0

  • Online ISBN: 978-3-030-01325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics