Skip to main content

Mixed Fault Tolerance in Server Assignment: Combining Reinforcement and Backup

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11085))

Abstract

We study the mixed approach to fault tolerance in the general context of server assignment in networks. The approach is based on mixing two different existing strategies, namely, reinforcement and backup. The former strategy protects clients by reinforcing the servers assigned to them and making them fault-resistant (at a possibly high cost), while the latter protects clients by assigning to them alternate low price backup servers that can replace their primary servers in case those fail. Applying the mixed approach to fault tolerance gives rise to new fault-tolerant variations of known server assignment problems. We introduce several NP-hard problems of this type, including the mixed fault-tolerant dominating set problem, the mixed fault-tolerant centers problem, and the mixed fault-tolerant facility location problem, and present polynomial time approximation algorithms for them, demonstrating the viability of the mixed strategy for server assignment problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Co., New York (1979)

    Google Scholar 

  2. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  3. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Math. Oper. Res. 10(2), 180–184 (1985)

    Article  MathSciNet  Google Scholar 

  4. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck problems. J. ACM 33(3), 533–550 (1986)

    Article  MathSciNet  Google Scholar 

  5. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)

    Article  MathSciNet  Google Scholar 

  6. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theor. Comput. Sci. 242(1), 237–245 (2000)

    Article  MathSciNet  Google Scholar 

  7. Parter, M., Peleg, D.: Fault tolerant BFS structures: a reinforcement-backup tradeoff. In: 27th ACM Symposium on Parallel Algorithms and Architectures (2015)

    Google Scholar 

  8. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Wiley-Interscience Series in Discrete Mathematics and Optimization (1999)

    Google Scholar 

  9. Sviridenko, M.: An improved approximation algorithm for the metric uncapacitated facility location problem. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 240–257. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47867-1_18

    Chapter  Google Scholar 

  10. Swamy, C., Shmoys, D.B.: Fault-tolerant facility location. ACM Trans. Algorithms (TALG) 4(4), 51 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Peleg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navon, T., Peleg, D. (2018). Mixed Fault Tolerance in Server Assignment: Combining Reinforcement and Backup. In: Lotker, Z., Patt-Shamir, B. (eds) Structural Information and Communication Complexity. SIROCCO 2018. Lecture Notes in Computer Science(), vol 11085. Springer, Cham. https://doi.org/10.1007/978-3-030-01325-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01325-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01324-0

  • Online ISBN: 978-3-030-01325-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics