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Abstract. This work presents an automatic method to segment the
aortic lumen in computed tomography scans by combining an ellipse-
based structure of the artery and an active contour model. The general
shape of the aorta is first estimated by adapting the contour of its cross-
sections to ellipses oriented in the direction orthogonal to the course of
the vessel. From this set of ellipses, an initial segmentation is computed,
which is used as starting approximation for the active contour technique.
Apart from the traditional attraction and regularization terms of the
active contours, an additional term is included to make the contour evolve
according to the likelihood of a given intensity to be inside the aorta or in
the surrounding tissues. With this technique, it is possible to adapt the
boundary of the initial segmentation by considering not only the most
significant edges, but also the distribution of the intensities inside and
surrounding the aortic lumen.
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1 Introduction

Computed tomography (CT) scans of the aorta provide the physicians with ex-
tremely valuable information for the diagnosis of several vascular pathologies,
which include aneurysms, elongations, thrombi or dissections. A thorough anal-
ysis of the shape of the aorta is required to achieve a robust diagnosis. In this
work, we present a method to obtain a segmentation of the aortic lumen by
combining an initial approximation given by a series of ellipses which model the
course of the aorta and a subsequent adjustment based on the active contour
models. Furthermore, the latter is improved by extracting the intensity distri-
butions inside the lumen and in the surrounding region to include statistical
information in the evolution of the contour.

The extraction of the geometry of the aorta by means of a parameterized
version of its cross-sections has been proposed in [3]. In [2], the contours of the



blood vessels are approximated by circles and these approximations are used to
estimate the distribution of intensities in the inner and outer regions. On the
other hand, the classical geodesic active contours, which allow adjusting an initial
approximation of a contour to the most significant edges in the surrounding
region, were introduced in [4]. A typical approach to implement these active
contours consists in using level-set methods, which have also been applied to
the segmentation of blood vessels [7]. In addition, some authors have previously
presented the inclusion of statistical information in the level sets [5]. In [§], the
boundary of the aorta is fitted using a cylindrical model. An overview of the
different techniques for the segmentation of vessels in 3D image modalities can
be found in [6]. In this work, we have combined the parameterized description of
the contour of the artery with an extended version of the active contour model
to extract a more precise segmentation of the aortic lumen in an automatic way.

2 Initial Approximation from Elliptical Cross-Sections

The shape of the aorta can be approximated by a curved tubular structure, in
which three parts can be identified, namely the ascending aorta, the aortic arch
and the descending aorta. In [3], the authors describe how this structure can be
modeled using a collection of ellipses. In order to obtain a compact model of the
vessel, the space between each consecutive pair of ellipses can be filled. Figure
illustrates the resulting ellipses using this algorithm and the volume generated
from them. In [2], the authors obtain an estimation of the distribution of the
intensities inside the aorta and in the surrounding tissues using a set of circles
to sample the intensities inside and around the artery. Figure |2| illustrates the
resulting probability density functions. Based on the results obtained in [3] and
[2], we propose a new automatic segmentation technique which uses the set of
ellipses to obtain an initial contour and the probability distribution to add a
new term in the active contour formulation.

Fig. 1. Initial approximation: (left) set of ellipses obtained for the cross-sections of the
aorta in the planes orthogonal to its flow, and (right) volume generated by filling the
space between the ellipses.
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Fig. 2. Kernel density estimation of the intensities inside and around the aorta.

3 Adjustment of the Segmentation Using Active
Contours

As mentioned above, we initially assumed that the cross-sections of the aorta
can be modeled using ellipses. However, in some sections an ellipse cannot fit the
contour in a completely satisfactory way. This usually happens due the presence
of calcium deposits or mural thrombi, abrupt changes in the curvature of the
aorta or even loss of the elliptic shape, mainly in the aortic root. For this reason,
we propose to adapt the initial segmentation by means of the active contour
technique. The classical formulation of this technique aims to adapt the contour
in such a way that it moves locally toward the highest gradients, but preserv-
ing a certain degree of smoothness. Therefore, it usually consists of two terms
which compete to reach a balance between contrast and regularity. The level set
formulation of the geodesic active contours (GAC) described in [4] is given by

5 = ar (v (e ) IVl + V¥, (1), )
where {(z,y,2) : u(t,z,y,2) < 0} is an implicit representation of the volume to
be optimized, I is the image on which the segmentation is performed and g, acts
as a stop function. In our case, the initial approximation is given by the volume
generated from the ellipses.

We must take into account that, in this work, the target organ is the aorta
and, therefore, there is a range of intensities on which we must focus. Further-
more, some extreme intensities, such as those radiolucent regions corresponding
to the lungs, could interfere in the evolution for the active contours, since they
present clearly highlighted edges which could attract the contour toward false
boundaries of the aorta. Consequently, we restrict the intensities to a given range
of interest, in such a way that those intensities below the lower limit or above
the upper limit are truncated to the lower or upper limit, respectively.

To determine these limits, we use the probability density functions estimated
using the kernel density estimation described in [2]. This provides us with an
estimation of the distribution inside the lumen f;,(.) and in the surrounding
tissues fout(.). Let P2 be the n'" percentile of the distribution f;,(.) and let



P, be the m'" percentile of the distribution f,,;(.), we can compute I asa
truncated version of I as follows:

I(z,y,2) = max{ Py, min{ P} I(z,y,2)}}, (2)
where we assume that P2 > P,. For the experiments we have selected P2, as

the lower limit and P[> as the upper limit.

4 Active Contours with Histogram-Based Descriptors

The classical active contours provide a suitable technique to adapt a contour
according to the magnitude of the gradient and the curvature of the contour.
However, when extracting the contour of the aorta, we can also consider the
fact that the intensities are distributed differently inside and outside the vessel.
From the distributions f;,(.) and fou:(.) described in the previous section, we
can build the following function:

k(I)(xvyaZ) = (fout(l(x7yvz)) - fm(l(a:,y,z))) ) (3)

where a > 0, and f;,(.), fout(.) provide us with the probability of a certain
value to appear inside or outside the lumen. Therefore, the function & is positive
if a given intensity I is more frequent in the outer region, and negative if it is
more frequent inside the lumen. Moreover, the higher the disparity between both
probabilities, the greater the magnitude of k, which means that the ambiguity is
lower. This function can be used to guide the contour in such a way that it grows
toward the surrounding regions which are more likely to be inside the lumen and
shrinks where the voxels on the contour are more likely to belong to the outer
region. This results in an expression as the following one:
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where I, is the smoothed version of the truncated image I using a Gaussian ker-
nel of standard deviation o. A mathematical study of this equation is presented
in [I]. The stop function which has been used in the active contours is given by
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where, in the experiments presented in this paper, A = 4/(Pf5 — P23,)? is in-
troduced to adjust this function to the difference between the intensities of the

inner and outer regions (indicated by the difference between the percentiles).
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5 Results and Discussion

In order to test the accuracy of the proposed technique, we have selected 10 CT
scans provided by the Department of Radiology of the University Hospital of



Santiago de Compostela (Spain), which have been segmented manually under the
supervision of a radiologist. Some of these cases present severe pathologies, such
as elongations, aneurysms, dissections or mural thrombi, including the presence
of metal artifacts (like stents), which makes it really difficult to extract a precise
segmentation. Figures [J(a)l(c)| show how, in most cases, the active contours
provide a better segmentation than the ellipses, and the introduction of the
histogram-based term allows adjusting the contour in a more accurate way. The
new proposal allows dealing with concavities and quite arbitrary shapes. Only
in certain particular situations, the presence of lateral ramifications can make
the active contour move away from the manual one (as shown in Fig. .
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Fig. 3. Illustration of the performance of the segmentation techniques in 4 different
slices (a)-(d). For each slice: (left) reference to the location of the cross-section in the
course of the aorta, and (right) comparison of the manual segmentation (M AN /white)
with the ellipse-based method (EBM /red), the geodesic active contours (GAC /yellow),
and the active contours with histogram-based descriptors (ACH /green).

Three measures have been used to assess the accuracy of the results. First, the
Dice similarity coefficient (DSC') measures how coincident the volumes covered
by the manual segmentation S, and the automatically extracted one S, are:

218 N S|

DSC = 2Zm - Zal
|Sm| + |Sal



Second, the bias estimator B),, indicates whether the automatic segmentation
S, provides an over- (respectively under-) segmentation of Sy,. It is given by:

15 \Sm| = [Sm \Sal
B =
pn |Sm ﬂSa| ) (7)

where |S,\Sp| and |S;,\S,| compute the false positives and false negatives, re-
spectively. Finally, the Euclidean distance from the voxels on the edge of the
manual segmentation to those on the edge of the automatic one indicates how
distant the contours are. Figures [4fa)lf(c)| show the closest point Euclidean dis-
tance from the manually delineated contour to those defined by the ellipses, the
classical active contours and the active contours improved with the histogram-
based term, respectively. As indicated by the colors, the number of voxels which
are distant (in red) is reduced with respect to the ellipse-based volume when the
active contours are applied, and even more if the histogram-based term is in-
cluded. By considering the difference between the initial and final distances (Fig.
, we can see that the distance is similar or shorter in the vast majority of
voxels, and some of them are significantly improved (bright green voxels).

Fig. 4. Closest point Euclidean distance from the manual segmentation to the results
provided by@the ellipses, mthe geodesic active contours, andthe active contours
with histogram-based descriptors (in mm), as well as [(d)] difference between [(a)] and
to illustrate the locations of the most significant changes.

Table shows the average DSC and B,,, as well as some statistics about the
Euclidean distance, for the set of 10 CT scans. As observed, the mean DSC' is
increased by the active contours, and even more with the histogram-based term.
On the other hand, the mean of the absolute B,,, is lower, which means that the
bias has been reduced. Finally, the mean distance from the manual segmentation
to the automatic one is significantly reduced, and so are the median and the 95"
percentile. The closest point Euclidean distance corresponding to these cases are
shown in Fig. [f] Table [2] shows some statistics for each individual CT scan. As
observed, the DSC is increased in all cases when the active contours are applied
and, in all cases but one, it is even higher when the histogram-based term is
included. Furthermore, the average Euclidean distance is reduced in all cases
when the active contours are applied and, in all of them, the histogram-based
term improves the results.



Table 1. Average results for the Dice similarity coefficient (DSC'), the magnitude
of the bias estimator By,, the mean distance, and different percentiles of the distance
from the manual segmentation to the ellipse-based model (EBM), the adjustment with
the geodesic active contours (GAC), and the improvement using the active contours
with histogram-based descriptors (ACH) (in bold the best value for each measure).

DSC | Bpn| Distance
mean P50 Po.95

EBM  0.9458 0.0426 0.7946 0.7793 2.2235
GAC 0.9527 0.0373 0.7339 0.7555 2.0856
ACH 0.9590 0.0159 0.5893 0.5830 1.5465
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Fig. 5. Closest point Euclidean distance from the manual segmentation to that pro-
vided by the active contours with histogram-based descriptors in 10 different CT scans
showing different pathologies.

Table 2. Dice similarity coefficient (DSC') and mean distance (in mm) obtained for 10
CT scans using the ellipse-based model (FBM), adjustment with the geodesic active
contours (GAC), and improvement using the active contours with histogram-based
descriptors (ACH) (in bold the best results for each case).

DSC Mean Distance
Case EBM GAC ACH EBM GAC ACH

HCS-0053  0.9426 0.9477 0.9549 0.7595 0.7461 0.5544
HCS-0055 0.9423 0.9550 0.9635 0.7513 0.6412 0.5207
HCS-0104  0.9345 0.9362 0.9343 0.7915 0.7896  0.7045
HCS-0119  0.9492 0.9576 0.9692 1.0356 0.9089 0.6365
HCS-0139  0.9384  0.9538 0.9623 0.8780 0.7589 0.5676
HCS-0141 0.9411 0.9423 0.9493 0.6923 0.6901 0.5678
HCS-0149  0.9609 0.9677 09712 0.7611 0.6657 0.5709
HCS-0164  0.9333 0.9464 0.9564 0.9712 0.8478 0.6613
HCS-0173  0.9497  0.9520 0.9588 0.7639 0.7544 0.6193
HCS-ELO1  0.9658 0.9680 0.9700 0.5412 0.5360 0.4895




6 Conclusion

The application of computer vision techniques to the analysis of medical images
often requires extremely precise segmentations of certain organs or tissues. This
is the case of the computer-aided diagnosis of several vascular pathologies. In
this work, we have presented a new approach to the segmentation of the aorta,
in which the extraction of its cross-sections by parameterizing them as ellipses is
improved by means of the active contour technique. Furthermore, the addition
of histogram-based descriptors to the classical formulation allows adjusting the
shape of the contour in a more precise way. The results have demonstrated that
the automatic segmentation which is obtained is closer to the manually delin-
eated one. Not only has the DSC' estimator been increased, but the Euclidean
distance between the boundaries of both segmentations has been reduced. The
good results for both measures support the idea that the combination of a param-
eterized description with the active contours, and the introduction of statistical
information in the latter, can provide satisfactory segmentations of the aorta.
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