Skip to main content

Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network

  • Conference paper
  • First Online:
Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis (LABELS 2018, CVII 2018, STENT 2018)

Abstract

Percutaneous coronary intervention is a treatment for coronary artery disease, which is performed under image-guidance using X-ray angiography. The intensities in an X-ray image are a superimposition of 2D structures projected from 3D anatomical structures, which makes robust information processing challenging. The purpose of this work is to investigate to what extent vessel layer separation can be achieved with deep learning, especially adversarial networks. To this end, we develop and evaluate a deep learning based method for vessel layer separation. In particular, the method utilizes a fully convolutional network (FCN), which was trained by two different strategies: an \(L_1\) loss and a combination of \(L_1\) and adversarial losses. The experiment results show that the FCN trained with both losses can well enhance vessel structures by separating the vessel layer, while the \(L_1\) loss results in better contrast. In contrast to traditional layer separation methods [1], both our methods can be executed much faster and thus have potential for real-time applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, H.: Automatic online layer separation for vessel enhancement in X-ray angiograms for percutaneous coronary interventions. Med. Image Anal. 39, 145–161 (2017)

    Article  Google Scholar 

  2. Ma, H., et al.: Layer separation for vessel enhancement in interventional X-ray angiograms using morphological filtering and robust PCA. In: Linte, C.A., Yaniv, Z., Fallavollita, P. (eds.) AE-CAI 2015. LNCS, vol. 9365, pp. 104–113. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24601-7_11

    Chapter  Google Scholar 

  3. Litjens, G.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  4. Hao, H., et al.: Vessel layer separation in X-ray angiograms with fully convolutional network. In: Proceedings of SPIE 10576, Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling (2018)

    Google Scholar 

  5. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., et al. (eds.) MICCAI 2017, Part III. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  8. Wolterink, J.M.: Generative adversarial networks for noise reduction in low-dose CT. IEEE TMI 36(12), 2536–2545 (2017)

    Google Scholar 

  9. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  10. Isola, P., et al.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  11. Wang, Z.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  12. Kingma, D., Ba, J.: ADAM: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hao, H., Ma, H., van Walsum, T. (2018). Layer Separation in X-ray Angiograms for Vessel Enhancement with Fully Convolutional Network. In: Stoyanov, D., et al. Intravascular Imaging and Computer Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. LABELS CVII STENT 2018 2018 2018. Lecture Notes in Computer Science(), vol 11043. Springer, Cham. https://doi.org/10.1007/978-3-030-01364-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01364-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01363-9

  • Online ISBN: 978-3-030-01364-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics