Skip to main content

Method for Robot to Create New Function by Uniting with Surrounding Objects

  • Conference paper
  • First Online:
  • 1330 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 867))

Abstract

In this paper, we propose a robot that creates new functions by uniting with other objects. Such a robot can be applied to various situations by creating functions that fit to the situations. In this paper, we describe the elements of the proposed robot and development of two types of prototypes. The first prototype has an uniting function by gripping objects, and we conducted a demonstration of creating an automatic angle adjustment function on a projector using this prototype. The second prototype has an uniting function by using electromagnets and we conducted demonstrations of creating a function to handle object on a high place and creating automatic open and close functions for a door using this prototype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boxerbaum, A.S., Werk, P., Quinn, R.D., Vaidyanathan, R.: Design of an autonomous amphibious robot for surf zone operation: part i mechanical design for multi-mode mobility. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronicsm, pp. 1459–1464, July 2005

    Google Scholar 

  2. Chirikjian, G.S., Burdick, J.W.: Design and experiments with a 30 DoF robot. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 113–119, vol. 3, May 1993

    Google Scholar 

  3. Fukuda, T., Nakagawa, S.: Approach to the dynamically reconfigurable robotic system. J. Intell. Robot. Syst. 1(1), 55–72 (1988)

    Article  Google Scholar 

  4. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid robot. In: Proceedings, 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146). vol. 2, pp. 1321–1326, May 1998

    Google Scholar 

  5. Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular ATRON: modules for a self-reconfigurable robot. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2004), vol. 2, pp. 2068–2073. IEEE (2004)

    Google Scholar 

  6. Kamimura, A., Kurokawa, H.: High-step climbing by a crawler robot DIR-2 - realization of automatic climbing motion. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 618–624, October 2009

    Google Scholar 

  7. Kato, I.: Development of WABOT-1. Biomechanism 2, 173–214 (1973)

    Article  Google Scholar 

  8. Levihn, M., Nishiwaki, K., Kagami, S., Stilman, M.: Autonomous environment manipulation to assist humanoid locomotion. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 4633–4638, May 2014

    Google Scholar 

  9. Lyder, A., Garcia, R.F.M., Stoy, K.: Mechanical design of odin, an extendable heterogeneous deformable modular robot. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 883–888, September 2008

    Google Scholar 

  10. Mizuuchi, I., Waita, H., Nakanishi, Y., Yoshikai, T., Inaba, M., Inoue, H.: Design and implementation of reinforceable muscle humanoid. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS2004), vol. 1, pp. 823–833 (2004)

    Google Scholar 

  11. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.W., Floreano, D., Deneubourg, J.L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: a new distributed robotic concept. Auton. Robots 17(2–3), 193–221 (2004)

    Article  Google Scholar 

  12. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mechatron. 7(4), 431–441 (2002)

    Article  Google Scholar 

  13. O’Flaherty, R., Vieira, P., Grey, M.X., Oh, P., Bobick, A., Egerstedt, M., Stilman, M.: Humanoid robot teleoperation for tasks with power tools. In: Proceedings of IEEE International Conference on Technologies for Practical Robot Applications, pp. 1–6. IEEE (2013)

    Google Scholar 

  14. Waldron, K., McGhee, R.: The adaptive suspension vehicle. IEEE Control Syst. Mag. 6(6), 7–12 (1986)

    Article  Google Scholar 

  15. Wright, C., Buchan, A., Brown, B., Geist, J., Schwerin, M., Rollinson, D., Tesch, M., Choset, H.: Design and architecture of the unified modular snake robot. In: 2012 IEEE International Conference on Robotics and Automation, pp. 4347–4354, May 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Morooka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morooka, Y., Mizuuchi, I. (2019). Method for Robot to Create New Function by Uniting with Surrounding Objects. In: Strand, M., Dillmann, R., Menegatti, E., Ghidoni, S. (eds) Intelligent Autonomous Systems 15. IAS 2018. Advances in Intelligent Systems and Computing, vol 867. Springer, Cham. https://doi.org/10.1007/978-3-030-01370-7_28

Download citation

Publish with us

Policies and ethics