
HI-VAL: Iterative Learning of Hierarchical Value
Functions for Policy Generation

Roberto Capobianco1, Francesco Riccio1, Daniele Nardi1

1 Department of Computer, Control, and Management Engineering,
Sapienza University of Rome,

via Ariosto 25, Rome, 00185, Italy
lastname@diag.uniroma1.it

Abstract. Task decomposition is effective in various applications where the global
complexity of a problem makes planning and decision-making too demanding.
This is true, for example, in high-dimensional robotics domains, where (1) un-
predictabilities and modeling limitations typically prevent the manual specifica-
tion of robust behaviors, and (2) learning an action policy is challenging due to the
curse of dimensionality. In this work, we borrow the concept of Hierarchical Task
Networks (HTNs) to decompose the learning procedure, and we exploit Upper
Confidence Tree (UCT) search to introduce HI-VAL, a novel iterative algorithm
for hierarchical optimistic planning with learned value functions. To obtain better
generalization and generate policies, HI-VAL simultaneously learns and uses ac-
tion values. These are used to formalize constraints within the search space and
to reduce the dimensionality of the problem. We evaluate our algorithm both on
a fetching task using a simulated 7-DOF KUKA light weight arm and, on a pick
and delivery task with a Pioneer robot.

1 Introduction

Generating effective action policies is impractical in various applications that are char-
acterized by large state spaces and require strong generalization capabilities. Many tech-
niques tackle the curse-of-dimensionality problem by using expert demonstrations to
initialize agents’ behaviors and guide the learning process. However, this is not feasible
when a reduced number of examples is available, and a direct mapping between the
expert’s and the agent’s action space is difficult to obtain (e.g. highly redundant robots).
While generalization is typically achieved by means of function approximation (e.g.,
using neural networks), solely relying on this and excluding prior knowledge can be
inefficient, slow and even dangerous in multiple applications, such as robotics. Hence,
Monte-Carlo tree search algorithms, and in particular the Upper Confidence Tree (UCT)
algorithm [13], are widely used to exploit prior knowledge [21] in exploring search
space. Nonetheless, they show limitations in generalizing among related states.

We build upon these state-of-the-art techniques to directly learn action values from
experience, and accordingly learn a policy by using UCT with focused exploration. To
this end, we introduce HI-VAL, a novel iterative algorithm for learning hierarchical
value functions that are used to (1) capture multi-layered action semantics, (2) generate
policies by scaffolding the acquired knowledge, and (3) guide the exploration of the

II

𝑠1, 𝑎2

𝑠2, 𝑎3

𝑠3, 𝑎1

𝑠4, 𝑎4

Ƹ𝑠1
2

ො𝑎1
2

Ƹ𝑠1
1 Ƹ𝑠2

1
ො𝑎1
1 ො𝑎2

1

A
S

12 3
4

1
2

3

4

Fig. 1. HI-VAL generates high-level representations of actions, that are used to improve the ex-
ploration of the search space. In this figure, we show the action hierarchy generated for a fetching
task using a redundant KUKA light weight arm.

state space. HI-VAL improves the UCT algorithm and builds upon concepts from pre-
vious literature, such as Hierarchical Task Networks (HTNs) [8], semi-MDPs [23] and
MAX-Q decompositions [7], to decompose the learning procedure and to generate both
action abstractions and search space constraints. The action hierarchy formalized by
HI-VAL is learned iteratively by evaluating state-actions pairs generated by UCT after
each episode. Fig. 1 shows an example of such a hierarchy where states and actions are
associated at different layers of abstraction. HI-VAL assigns states and actions to differ-
ent clusters scl and acl by evaluating the similarity of successor states that the agent can
reach, by applying the actions in acl in the states contained in scl . Intuitively, similar suc-
cessor states have similar reward values and can be evaluated altogether when exploring
the search space. Different layers provide different granularity of action semantics (the
higher the more coarse) and help the learning process to evaluate states hierarchically.
HI-VAL runs UCT to explore the environment by sampling the joint distribution of re-
wards and state-action pairs. Each sample is continuously aggregated into a dataset, that
is used to estimate – by means of Q-learning – the value function Qλ of each layer λ
in the hierarchy. Specifically, at each layer, Monte Carlo search is ran for a subset of
actions that are evaluated according to their Q-value, thus driving the node-expansion
phase during episode simulation.

In this work, we aim at demonstrating that Q-values can be learned hierarchically
to influence exploration, and to represent action semantics at different levels of abstrac-
tion, thus linking learning techniques to low-level agent controls. Our main contribu-
tions consist in (1) a novel integration of Monte-Carlo tree search, hierarchical planning
and Q-learning, that enables good performance with selective state exploration and im-
proved generalization capabilities, in (2) a two-sided extension of TD-search, that not

III

only executes on multiple hierarchy layers, but also constructs upper confidence bounds
on the value functions – and selects actions optimistically with respect to those – and in
(3) a reduction of the curse-of-dimensionality that is obtained by means of focused ex-
ploration. We evaluated the HI-VAL performance in two different scenarios, an “object-
fetching” task with a 7-DOF KUKA light weight arm and, a “pick and delivery” task
in a simple environment with a Pioneer robot, where the agent has to collect an item
and delivering it reduction in the number of states explored – which makes the method
more suitable in robotic applications – and, the ability of HI-VAL to represent action
semantics through its hierarchy in order to boost the learning process.

2 Related Work

Policy learning is widely adopted to generate practical behaviors in several applications.
This is true for complex domains, such as robotics [4], where unstructured environ-
ments and uncertain dynamics through handcrafted policies – that typically fail or must
be refined [14]. Although designing effective policies is impractical in most of these
scenarios, and learning techniques are typically demanding and time consuming [11]
for problems with large state spaces. The computational demand can be alleviated by
initializing a policy with expert demonstrations, that restrict the learning process to a
promising hypothesis space [12, 20]. However, to apply imitation learning in complex
domains, a large dataset of good-quality expert demonstrations is generally required,
that can be efficiently mapped to the agent’s action space. Unfortunately, this is not
always possible due to the lack of (1) domain experts, (2) practical ways of providing
demonstrations, and (3) action mappings from experts to agents (e.g. hyper-redundant
robots).

To overcome these difficulties, we propose an approach that does not require expert
demonstrations to initialize agent behaviors, and decomposes the learning procedure
to generate action abstractions and search space constraints. In literature, multiple au-
thors exploit the notions of skills and semi Markov Decision Processes (semi-MDPs),
and define hierarchical representations such as options [23] and MAX-Q decomposi-
tions [7]. Unfortunately, applications of these methods in complex domains like robotics
are limited, and prior knowledge has to be enforced in the learning process by means
of expert demonstrations. In fact, although hierarchical learning and value function
approximations techniques have been adopted in several applications, state-of-the-art
techniques still show considerable margin of improvement. For example, [19] provide a
better policy generalization by exploiting the concept of Generalized Value Functions,
to improve value function approximation. In a different settings, [6] use expert demon-
strations to learn high-level tasks as a combination of action-primitives. Unfortunately,
these approaches only learn specific hierarchical structures, that poorly generalize and
cannot profit from the expressiveness of value functions. Similarly, [22] apply hier-
archical learning to sequences of motion primitives on a pick-and-place task with a
hyper-redundant robotic arm. [15] initialize skill trees from human demonstrations, im-
proving them over time. However, their representations use expert demonstrations and
do not represent action on higher levels of abstractions. Conversely, [10] apply hierar-
chical policy learning to solve a 2-DOF stand-up task for a robotic arm. They exploit

IV

Q-learning and actor-critic methods to learn both task decompositions and local trajec-
tories that solve specific sub-goals. Alternatively, [9] and [2] formalize action hierar-
chies to represent actions at different levels of abstraction. However, these procedures
are not easily scalable to higher dimensionality problems.

Motivated by our discussion, we extend our previous work [17, 16] to formalize
action hierarchy by introducing HI-VAL, an iterative algorithm that learns hierarchical
value functions to drive the policy search, and that achieves good generalization with a
focused state exploration without the aid of expert demonstrations. Specifically, we en-
able HI-VAL to (1) learn a hierarchical value function directly from experience and (2)
simultaneously use learned values during exploration, to generate a competitive policy.
As in Hierarchical Task Networks, value functions are used to plan both over compound
and primitive action spaces, whereas compound actions have specific implementations
that depend on the state of the environment. Like [21], we exploit TD (temporal differ-
ence) methods to learn action values during a Monte-Carlo tree search. In this way, on
the one hand, we are able to learnQ-values, and on the other hand, we adoptQ-values to
support decision-theoretic planning for generalization and exploration at multiple levels
of abstraction. Differently from [21], in fact, not only we improve our model by pre-
serving the selective search of Monte-Carlo algorithms when bootstrapping is ongoing,
but we also generate action and state abstractions. Specifically, HI-VAL extends TD-
search by constructing upper confidence bounds on a hierarchy of value functions, and
by selecting optimistically with respect to those. As the experimental evaluation shows
in both scenarios, HI-VAL generates competitive policies – with the additional benefit
of a reduction in (1) number of simulations (or expanded node), and (2) exploration of
the search space – that alleviates the curse-of-dimensionality.

3 HI-VAL

Formulation. HI-VAL is an iterative algorithm that, at each iteration i, generates a new
policy πi which improves πi−1 [17]. To obtain an improved πi, our algorithm leverages
(1) data aggregation [18], and (2) Upper Confidence Bounds for Trees (UCT) [13], a
variant of Monte-Carlo Tree Search that adopts an upper confidence bound strategy –
UCB1 [3] – for balancing between exploration and exploitation on the tree. To describe
HI-VAL we adopt the Markov Decision Process (MDP) notation, in which the decision-
making problem is represented as a tuple MDP = (S,A, T , R, γ), where S is the
set of discrete states of the environment, A represents the set of discrete actions, T :
S × A × S → [0, 1] is a stochastic transition function that models the probabilities of
transitioning from state s ∈ S to s′ ∈ S when taking action a ∈ A, R : S × A → R is
the reward function, and γ is a discount factor in [0, 1).

Function Approximation. HI-VAL addresses the generalization problem by relying on
previous literature [5]. We choose to approximate the Q function using probability den-
sities in the form of a mixture ofK Gaussians (i.e., Gaussian Mixture Models – GMMs).
We integrate the approach in [1] with a data aggregation [18] procedure, where a dataset
of samples is iteratively collected and aggregated. Specifically, at each iteration i, the

V

values Qi are determined according to the Q-learning update rule

Qi(s, a) = Q̂′(s, a) + α(r + γmax
a′

Q̂′(s′, a′)− Q̂′(s, a)), (1)

where α is the learning rate, Q̂′ is the function approximation learned at previous iter-
ation, and Q0(s, aj) = 0. As we discuss later, the function approximation Q̂ is learned
over an aggregated dataset D0:i = {∪Dd|d = 0 . . . i}.

3.1 Exploration and Sample Collection

At every step h, for h = 1 . . . H , UCT simulates the execution of all the actions AL ⊆
A that are “admissible” in sh, as detailed in next section. Specifically, each simulation
executes an action a ∈ AL, followed by K roll-outs, that run an ε-greedy policy based
on πi−1 until a terminal state is reached. The best action ah is selected according to

e = C ·

√
log(

∑
a η(sh, a))

η(sh, a)

a∗h = argmax
a

Q̂(sh, a) + e,

(2)

where C is a constant that multiplies and controls the exploration term e, and η(sh, a)
is the number of occurrences of a in sh. Since we assume a discrete state space S, for
continuous problems we define a similarity operator that informs the algorithm whether
the difference of two states is smaller than a given threshold ξ – thus discretizing the
space.
During each roll-out:

– a dataset Di of samples x = (s, a,Qi(s, a)) is collected to improve our estimate
Q̂, as detailed in previous section;

– HI-VAL uses UCT as an expert and collects a dataset Dπ,uct of H samples x =
(sh, a

∗
h, s
′
h) that are selected by the tree search

– similarly to DAgger [18], Dπ,uct is aggregated into a dataset Dπ,i = Dπ,uct ∪
Dπ,i−1.

When H UCT steps are run, Dπ,i is used to generate hierarchy clusters – as detailed in
the next section – and learn a new policy πi. Our algorithm uses a discovery process
that is supported by the UCT search and policy.

3.2 Hierarchical Action Selection

The hierarchical model adopted in HI-VAL builds upon the concepts of High-Level
Actions (HLAs) and Reachable Sets (RSs) in HTNs [8].

– HLAs are defined recursively as a sequence of action primitives and/or other HLAs.
When a HLA is composed by only primitives, such sequence is called “implemen-
tation”.

VI

– RSs model preconditions and effects of HLAs. They are defined as the union of
possible states reachable by the the different implementations of HLAs. A RS is
bounded by a pessimistic RS− and optimistic RS+ set. RS− represents the set of
states that are reached independently from the chosen implementation, while RS+

represents the set of states reached by all the possible implementations. Reachable
sets describe interesting properties: (1) if RS− intersects the set of goal states, then
a sequence of admissible actions leading to the goal is found; (2) if, instead, RS+

intersects the set of goal states, a plan exists but its implementations do not reach
the goal yet.

Using similar concepts, we allow HI-VAL to evaluate actions at multiple levels of
abstraction. Specifically, a hierarchy of actions is obtained using an agglomerative clus-
tering algorithm, which is ran on the set of next states {s′} present in the Dπ,i. Our key
assumption is that similar s′ encode information about actions with similar effects and
thus can be clusterized altogether. Particulary, we refer to H as the set of layers in the
action hierarchy generated by the clustering algorithm. The clustering routine organizes
{s′} in clusters ŝ′ over a predefined number of layers, which are then tranferred into the
action space, generating a set of action clusters â organized along the same structure.
Such a mapping is realized by evaluating each element contained in the ŝ′ clusters and
backpropagated to the original dataset Dπ,i in order to retrieve the set of actions gen-
erating the transitions to the {s′} states. In fact, dataset elements are a tuple of three
components encoding a transition from the current state s to the next state s′ by means
of the action a. Fig. 1 shows a simplistic example of such hierarchies.

In our algorithm, each action cluster â corresponds to a HLA in the layer λ ∈
H, and each layer has an associated Qλ function, approximated as Q̂λ. The result of
choosing an action â consists of selecting a cluster of lower level actions with a similar
expectation to reach a desired cluster ŝ′. Noticeably, such a model intrinsically connects
to the concept of reachable sets. Clusters ŝ′ are in fact an approximation of optimistic
sets RS+, and they evaluate actions â that lead to more rewarding states altogether.

HI-VAL uses each Qλ in s to select the set AL of “admissible” actions for UCT.
Intuitively, a primitive action a is admissible in s if, for each layer λ, a belongs to the
cluster âλ selected according to Qλ. More formally:

AL =
⋃
a∈A

{
a | ∀λ ∈ H : a ∈ âλ

}
(3)

âλ = argmax
â

Qλ(s, â) + δλs,â (4)

δλs,â ∼ N (0, σ2(Qλ|s, â)),

where σ2 is the standard deviation of the regression approximation [1].
Through δλs,â, the prediction error for each action abstraction is captured, leading to

a more directed exploration of the action hierarchy. Action primitives are finally chosen
and executed by UCT according to the lowest-level Q̂, as detailed in previous section.
To obtain a less biased exploration and avoid value function over-fitting, inadmissible
actions are anyway expanded and selected by UCT with a 30% probability.

VII

Algorithm 1: HI-VAL

Input: D0 dataset of random state action pairs {(s, a, s′)}.
Output: πN policy learned after N iterations of the algorithm.
Data: A set of primitive actions, N number of iterations of the algorithm, ∆ initial state

distribution, H UCT horizon, K ε-greedy roll-outs, T policy execution timesteps,
H set of layers.

begin
Initialize Q̂0 to predict 0.
Train classifier π0 on Dπ,0.
for i = 1 to N do

s0 ← random state from ∆
for t = 1 to T do

Get state st by executing πi−1(st−1).
Duct ← UCT(H, st)
Dπ,i ← Dπ,i ∪ Duct
ŝ, ŝ′ ←agglomerativeClustering(Dπ,i)
â← mapping(ŝ′)
foreach λ ∈ H do

// update estimated Q-values
R̄(ŝ, â)← 1

|(ŝ,â)|
∑
s∈ŝ,a∗∈âR(s, a∗)

Dλ,i ← getSamples(Duct, R̄(ŝ, â))
Dλ,0:i ← Dλ,0:i ∪ Dλ,i

Train Q̂λ,i(ŝ, â) on Dλ,0:i

end
end
Train classifier πi on Dπ,i

end

return πN
end

3.3 HI-VAL Algorithm

The goal of HI-VAL consists of iteratively updating each layer’s value function approx-
imation Q̂λ, to generate a policy πi that maximizes the expected reward of the agent.
The underlying insight of HI-VAL is that, while exploring the search space, collected
state-action pairs are used at each iteration i to (1) update the approximatedQ functions
for refining the policy πi−1 into a policy πi, and (2) use Q-values to influence UCT ex-
ploration in accordance with Eq. 3. The complete HI-VAL algorithm – described in
Alg. 1 – for each iteration proceeds as follows:

1. Roll-in. The agent follows the previous policy πi−1 and generates a set of st states
for T timesteps.

2. UCT search. For each of the generated states st, HI-VAL runs an UCT search with
horizon H . At each step h, UCT simulates the execution of every “admissible”
action in the set AL, computed according to Eq. 3. For each action a ∈ AL, a

VIII

simulation consists of the execution of a, followed by K ε-greedy roll-outs based
on πi−1, which are used to estimate the Q-values of each visited state. Finally, for
each step, the best action a∗h is (1) chosen according to Eq. 2 and (2) aggregated
into a dataset Duct together with sh and sh+1. It is worth remarking that a vanilla
implementation of the UCT search evaluates all possible actions and explores a
significant amount of states to generate an effective policy. Our approach, instead,
leverages the hierarchical structure ofH to generate a restricted subset of “admissi-
ble” actions, with high estimated Q-value. This efficiently reduces the exploration
phase by guiding the algorithm to discard actions that are not expected to improve
πi−1.

3. Hierarchical data aggregation and Q̂ update. After UCT, new data Duct =
{(st+h, a∗t+h, s′t+h+1) | h = 1 . . . H} is available to be aggregated into a larger
dataset Dπ,i. This dataset is used to generate clusters ŝ, â, and ŝ′ in two steps: first,
the sets of states {s} and {s′} in Dπ,i are separately clustered within λ layers;
then, the hierarchy of next state clusters ŝ′ is transferred into the action space to
generate the action clusters â, each of them corresponding to high-level actions.
In order to correctly update the Q̂λ estimation for every â, samples of the form
xλ = (ŝ, â, Qλ(s, â)) are generated for each layer λ, with Qλ(s, â) determined as
in Eq. (1). Such samples are then (1) aggregated into a dataset Dλ,0:i and (2) used
to improve the estimate Q̂λ, as described in previous sections. Specifically, Q̂λ is
updated for each (ŝ, â) containing the state-action pairs (st+h, a

∗
t+h) ∈ Duct, by

using the averaged reward R(st+h, a∗t+h) of the corresponding state-action pairs in
the clusters (ŝ, â).

4. Training. Once data aggregation has been performed, a new policy πi is trained
from the dataset Dπ,i (e.g., using a classifier).

4 Experimental Evaluation

We evaluate our approach in generating a policy for executing a “fetching” task, and a
“pick and delivery” task in a simple environment [7], with a reduced number of state-
action pairs explored by UCT. We compare our results with a random-UCT and vanilla-
UCT implementations, the TD-search [21] algorithm and different configurations of
the HI-VAL action hierarchy. We will refer to as VAL as a basic implementation of
the action hierarchy composed solely by a single layer of the primitive actions. Then,
the random-UCT algorithm selects a random action at each h step of the Monte Carlo
search, while in the vanilla-UCT all actions are considered “admissible” at each step.
In all algorithms, we implement a shaped reward function that computes reward values
at each visited state. We deploy these algorithms within a simulated environment on a
7-DOF KUKA light weight arm and, on a Pioneer robot.

Experiments have been conducted within the V-REP simulation environment, using
a single Intel i7-5700HQ core, with CPU@2.70GHz and 16GB of RAM. For both the
scenarios, the UCT search has been configured as follows: (1) search horizon H = 4;
(2) exploration constant C = 0.707; (3) K = 3 roll-outs. The number of components
of the GMMs is evaluated according to the BIC criterion, which has been tested using
up to 6 Gaussians. Q-values are updated with a learning rate α = 0.1, and a discounted

IX

1 2 3 4 5 6 7 8 9 10

Iteration N

0

2

4

6

8

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

Val

Hi-Val

TD-search

random-UCT

vanilla-UCT

Fig. 2. Average cumulative reward obtained by the random-UCT, TD-search, vanilla-UCT, VAL

and HI-VAL over 10 iterations.

1 2 3 4 5 6 7 8 9 10

Iteration N

0

500

1000

1500

2000

2500

N
um

.
of

ex
pl

or
ed

st
at

es

Exploration

Val

Hi-Val

TD-search

random-UCT

vanilla-UCT

Fig. 3. Number of states expanded by the random-UCT, TD-search, vanilla-UCT, VAL and HI-
VAL.

factor γ = 0.8. The algorithm is ran for T = 15 timesteps at each iteration. Moreover,
stochastic actions are induced by randomizing the outcome of an action with a 5%
probability.

4.1 Fetching task

In this scenario the state of the problem is represented as a 7-feature vector, where 3
components represent the distance of the robot end-effector to the target, 3 components

X

encode the distance to an obstacle introduced in the scene, and the last component is
the angle difference between the end-effector and world axis Z. We include such com-
ponent to bias the agent in planning to fetch an object with a preferable orientation. The
reward function is a weighted sum of such components, and it is designed to promote
states that are far from the obstacle, and close to the target position. Additionally, it
penalizes states in which the end-effector does not point upwards, to simulate objects
that have to be held with a preferred orientation (e.g. a glass full of water). The robot
explores an action space composed by 13 actions: 6 translation actions to move the
arm back and forth along the Cartesian axes, and 6 rotation actions to move the arm
counter-/clockwise on the Roll, Pitch and Yaw angles. A no-op action is introduced to
let the robot in its state. Fig. 2 and Fig. 3 illustrate obtained results by reporting the
average cumulative reward and the number of explored states obtained during 10 itera-
tions. In detail, reward values are averaged over 10 simulated fetching trials for each of
the iterations and for each algorithm, the continuous lines represent average cumulative
rewards while the line width their standard deviation. In the explored state plots, the
gray top part of each bar highlights the amount of states expanded during i with respect
to the total number of states explored until i − 1. While baseline algorithms perform
worse in terms of obtained rewards (random-UCT, TD-search), only the vanilla-UCT
shows results that are comparable to HI-VAL. However, the number of explored states
of vanilla-UCT is significantly higher. Specifically, the naive implementation of UCT
evaluates more than two times the number of states that HI-VAL (∼55%). In fact, HI-
VAL approximates the optimistic set of a HTN by evaluating only “admissible” actions
that are expected to lead the search towards states with high reward. This is achieved by
exploiting the action hierarchy updated at each iteration. Moreover, the results compare
two different configurations of HI-VAL. The first, VAL, is organized as a single layer
structure, where the number of clusters within the layer is equal to the number of prim-
itive actions, while the latter configuration, HI-VAL, is organized over 2 layers where
the first layer also contains the set of primitive actions and, the second layer groups
actions in 5 clusters. Again HI-VAL further reduces the number of explored states and
confirms that a hierarchical evaluation of the search space improves the learning pro-
cess. In this scenario, we do not notice a significant improvement between HI-VAL and
VAL since, differently from the “pick and delivery” task, the structure of “fetching” is
not hierarchical. However, we aim at showing that increasing the number of layers in
the representation, even when that is not needed, does not damage the obtained perfor-
mance and, still, slightly decreases the number of visited states.

4.2 Pick and delivery task

Here the environment is represented as a 5x5 grid-world where the Pioneer has to col-
lect an object at a random location and, carry it to an operator. The scenario resembles
the one addressed by the “taxi-agent” in [7], however a comparison with max-Q would
not be proper since our reward is implemented to be shaped and not sparse; and we
implement our approach in a robotic context where the reduced number of samples and
iterations are limiting constraints. Here, the state is a 9-feature vector where the first two
components represent the position of the robot, the following two encode the current
target of the robot (either the object station or the delivery one), the fifth component

XI

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration N

0

2

4

6

8

10

12

14

A
vg

.
C

um
ul

at
iv

e
R

ew
ar

d

Policy Reward Values

Hi-Val-3L

Hi-Val-2L

Val

TD-search

random-UCT

vanilla-UCT

Fig. 4. Average cumulative reward obtained by the random-UCT, TD-search, vanilla-UCT, VAL,
HI-VAL-2L and HI-VAL-3L over 49 iterations.

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Iteration N

0

10000

20000

30000

40000

N
um

.
of

ex
pl

or
ed

st
at

es

Exploration

Hi-Val-3L

Hi-Val-2L

Val

TD-search

random-UCT

vanilla-UCT

Fig. 5. Number of states expanded by the random-UCT, TD-search, vanilla-UCT, VAL, HI-VAL-
2L and HI-VAL-3L over 49 iterations.

indicates whether the object is picked, and the last four components indicate whether
there is an obstacle in one of the four possible directions (e.g. wall). The action space of
the agent in composed by 6 actions, four to move through cells, and two to pick and drop
the object. Moreover, we assume that a robot is helped to collect and drop the objects
by an external operator. The reward function is a weighted sum of two components
encoding the distance of the robot to the target object and the distance of the object
to its delivery station. This task represents a more complex scenario due to temporal

XII

constraints imposed by the status of the object, but as in the previous task, a similar
analysis of the results can be observed. Fig. 4 and Fig. 5 illustrate the average cumu-
lative reward and the number of explored states obtained during 49 iterations. Also in
this case, vanilla-UCT has comparable reward values, but the number of explored states
is still significantly higher than each configuration of HI-VAL. The action hierarchy of
HI-VAL, in fact, improves the overall performance showing the best results with a 3
layered structure. Particularly in these complex scenarios – where ordering constraints
exist and the task can be decomposed – HI-VAL performs better and confirms that a
multi-layered representation of action semantics improves the exploration of the search
space.

5 Conclusion

In this paper we introduced HI-VAL, an iterative learning algorithm of hierarchical
value functions for policy generation. We discussed its key features and described how
it improves search space exploration in order to generate efficient policies. The results
of our experimental evaluation show the efficacy of HI-VAL in enabling the agent to
learn a good policy by evaluating a significant lower number of states. In fact, HI-VAL
can be used to solve different tasks in multiple domains. Finally, we are investigating
different directions to further improve HI-VAL, such as a proper formulation for contin-
uous problems. Moreover, we want to explore the possibility of transferring hierarchical
value functions among learning agents in order to take advantage of abstract actions and
their semantics in different tasks.

References

1. Agostini, A., Celaya, E.: Reinforcement learning with a gaussian mixture model. In: The
2010 International Joint Conference on Neural Networks. pp. 1–8 (July 2010)

2. Anand, A., Grover, A., Mausam, M., Singla, P.: Asap-uct: Abstraction of state-action pairs
in uct. In: Proceedings of the 24th International Conference on Artificial Intelligence. pp.
1509–1515. IJCAI’15, AAAI Press (2015), http://dl.acm.org/citation.cfm?
id=2832415.2832459

3. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit prob-
lem. Machine Learning 47(2-3), 235–256 (May 2002)

4. Bagnell, J.A., Schneider, J.G.: Autonomous helicopter control using reinforcement learning
policy search methods. In: 2001 IEEE International Conference on Robotics and Automa-
tion. vol. 2, pp. 1615–1620 vol.2 (2001)

5. Chowdhary, G., Liu, M., Grande, R., Walsh, T., How, J., Carin, L.: Off-policy reinforcement
learning with gaussian processes. IEEE/CAA Journal of Automatica Sinica 1(3), 227–238
(2014)

6. Clair, A.S., Saldanha, C., Boteanu, A., Chernova, S.: Interactive hierarchical task learning
via crowdsourcing for robot adaptability. In: Refereed workshop Planning for Human-Robot
Interaction: Shared Autonomy and Collaborative Robotics at Robotics: Science and Systems,
Ann Arbor, Michigan. RSS (2016)

7. Dietterich, T.G.: Hierarchical reinforcement learning with the maxq value function decom-
position. Journal of Artificial Intelligence Research (JAIR) 13, 227–303 (2000)

XIII

8. Erol, K., Hendler, J., Nau, D.S.: Htn planning: Complexity and expressivity. In: the Twelfth
National Conference on Artificial Intelligence (Vol. 2). pp. 1123–1128. AAAI’94, American
Association for Artificial Intelligence, Menlo Park, CA, USA (1994), http://dl.acm.
org/citation.cfm?id=199480.199459

9. Hostetler, J., Fern, A., Dietterich, T.G.: Sample-based tree search with fixed and adaptive
state abstractions. J. Artif. Intell. Res. 60, 717–777 (2017), https://doi.org/10.
1613/jair.5483

10. Jun, M., Kenji, D.: Acquisition of stand-up behavior by a real robot using hierarchical rein-
forcement learning. Robotics and Autonomous Systems 36(1), 37 – 51 (2001)

11. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning in robotics: A survey. Interna-
tional Journal of Robotics Research (July 2013)

12. Kober, J., Peters, J.R.: Policy search for motor primitives in robotics. In: Advances in neural
information processing systems. pp. 849–856 (2009)

13. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning, pp. 282–293.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006), https://doi.org/10.1007/
11871842_29

14. Kohl, N., Stone, P.: Policy gradient reinforcement learning for fast quadrupedal locomotion.
In: 2004 IEEE International Conference on Robotics and Automation. vol. 3, pp. 2619–2624
Vol.3 (April 2004)

15. Konidaris, G., Kuindersma, S., Grupen, R., Barto, A.: Robot learning from demonstration
by constructing skill trees. International Journal of Robotics Research 31(3), 360–375 (Mar
2012)

16. Riccio, F., Capobianco, R., Nardi, D.: Dop: Deep optimistic planning with approximate value
function evaluation. In: Proceedings of the 2018 International Conference on Autonomous
Agents and Multiagent Systems (AAMAS). pp. – (2018)

17. Riccio, F., Capobianco, R., Nardi, D.: Q-cp: Learning action values for cooperative planning.
In: 2018 IEEE International Conference on Robotics and Automation (ICRA). pp. – (2018)

18. Ross, S., Gordon, G.J., Bagnell, D.: A reduction of imitation learning and structured predic-
tion to no-regret online learning. In: International Conference on Artificial Intelligence and
Statistics. pp. 627–635 (2011)

19. Schaul, T., Ring, M.: Better generalization with forecasts. In: Proceedings of the Twenty-
Third International Joint Conference on Artificial Intelligence. pp. 1656–1662. IJCAI ’13,
AAAI Press (2013)

20. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham,
J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
Hassabis, D.: Mastering the game of Go with deep neural networks and tree search. Nature
529, 484–503 (2016)

21. Silver, D., Sutton, R.S., Müller, M.: Temporal-difference search in computer go. Machine
learning 87(2), 183–219 (2012)

22. Stulp, F., Schaal, S.: Hierarchical reinforcement learning with movement primitives. In: 2011
IEEE-RAS International Conference on Humanoid Robots. pp. 231–238 (Oct 2011)

23. Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for tempo-
ral abstraction in reinforcement learning. Artificial intelligence 112(1-2), 181–211 (1999)

