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Real-time marker-less multi-person 3D pose estimation in RGB-Depth
camera networks

Marco Carraro!, Matteo Munaro', Jeff Burke? and Emanuele Menegatti

Abstract— This paper proposes a novel system to estimate
and track the 3D poses of multiple persons in calibrated RGB-
Depth camera networks. The multi-view 3D pose of each person
is computed by a central node which receives the single-view
outcomes from each camera of the network. Each single-view
outcome is computed by using a CNN for 2D pose estimation
and extending the resulting skeletons to 3D by means of
the sensor depth. The proposed system is marker-less, multi-
person, independent of background and does not make any
assumption on people appearance and initial pose. The system
provides real-time outcomes, thus being perfectly suited for
applications requiring user interaction. Experimental results
show the effectiveness of this work with respect to a baseline
multi-view approach in different scenarios. To foster research
and applications based on this work, we released the source
code in OpenPTrack, an open source project for RGB-D people
tracking.

I. INTRODUCTION

The human body pose is rich of information. Many
algorithms and applications, such as Action Recognition [1],
[2], [3], People Re-identification [4], Human-Computer-
Interaction (HCI) [5] and Industrial Robotics [6], [7], [8]
rely on this type of data. The recent availability of smart
cameras [9], [10], [11] and affordable RGB-Depth sensors
as the first and second generation Microsoft Kinect, allow
to estimate and track body poses in a cost-efficient way.
However, using a single sensor is often not reliable enough
because of occlusions and Field-of-View (FOV) limitations.
For this reason, a common solution is to take advantage
of camera networks. Nowadays, the most reliable way to
perform human Body Pose Estimation (BPE) is to use
marker-based motion capture systems. These systems show
great results in terms of accuracy (less than Imm), but
they are very expensive and require the users to wear many
markers, thus imposing heavy limitations to their diffusion.
Moreover, these systems usually require offline computations
in complicated scenarios with many markers and people,
while the system we propose provides immediate results. A
real-time response is usually needed in security applications,
where person actions should be detected in time, or in
industrial applications, where human motion is predicted to
prevent collisions with robots in shared workspaces. Aimed
by those reasons, the research on marker-less motion capture
systems has been particularly active in recent years.
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Fig. 1: The output provided by the system we are proposing.
In this example, five persons are seen from a network
composed of four Microsoft Kinect v2.

In this work, we propose a novel system to estimate
the 3D human body pose in real-time. To the best of our
knowledge, this is the first open-source and real-time solution
to the multi-view, multi-person 3D body pose estimation
problem. Figure [I] depicts our system output. The system
relies on the feed of multiple RGB-D sensors (from 1 to N)
placed in the scene and on an extrinsic calibration of the
network. in this work, this calibration is performed with the
calibration_toolkit [12 The multi-view poses are
obtained by fusing the single view outcomes of each detector,
that runs a state-of-the-art 2D body pose estimator [13], [14]
and extend it to 3D by means of the sensor depth. The
contribution of the paper is two-fold: i) we propose a novel
system to fuse and update 3D body poses of multiple persons
in the scene and ii) we enriched a state-of-the-art single-
view 2D pose estimation algorithm to provide 3D poses.
As a further contribution, the code of the project has been
released as open-source as part of the OpenPTrack [15], [16]
repository. The proposed system is:

o multi-view: The fused poses are computed taking into
account the different poses of the single-view detectors;

o asynchronous: The fusion algorithm does not require
the different sensors to be synchronous or have the
same frame rate. This allows the user to choose the
detector computing node accordingly to his needs and
possibilities;

o multi-person: The system does not make any assump-
tion on the number of persons in the scene. The
overhead due to the different number of persons is
negligible;

Ihttps://github.com/iaslab-unipd/calibration_
toolkit


https://github.com/iaslab-unipd/calibration_toolkit
https://github.com/iaslab-unipd/calibration_toolkit

RGB ) . Q } -
oo Single-view ’
Calib. Parars detector

RGB
o Sln | Vi f
Depth gle-view
Sensor 1 Calib. Para:ss detector

%

A
y
5| Single-view k !
Sensor N Depth \
Calib. Pararlls detector ~ _

Fig. 2: The system overview. The camera network is composed of several RGB-D sensors (from 1 to N). Each single-
view detector takes the RGB and Depth images as input and computes the 3D skeletons of the people in the scene as the
output using the calibration parameters K. The information is then sent to the multi-view central node which is in charge
of computing the final pose estimation for each person in the scene. First, a data association is performed to determine
which pose detection is belonging to which pose track, then a filtering step is performed to update the pose track given the

detection.

o scalable: No assumptions are made on the number or
positions of the cameras. The only request is an offline
one-time extrinsic calibration of the network;

e real-time: The final pose framerate is linear to the
number of cameras in the network. In our experiments,
a single-camera network can provide from 5 fps to
15 fps depending on the Graphical Processing Unit
(GPU) exploited by the detector. The final framerate
of a camera network composed of k£ nodes is the sum
of their single-view framerate;

e low-cost: The system relies on affordable low-cost
RGB-D sensors controlled by consumer GPU-enabled
computers. No specific hardware is required.

The remainder of the paper is organized as follows: in
Section [[I] we review the literature regarding human BPE
from single and multiple views, while Section |llI| describes
our system and the approach used to solve the problem. In
Section [IV] experimental results are presented, and, finally in
Section [V] we present our final conclusions.

II. RELATED WORK
A. Single-view body pose estimation

Since a long time, there have been a great interest about
single-view human BPE, in particular for gaming purposes
or avatar animation. Recently, the advent of affordable RGB-
D sensors boosted the research in this and other Computer
Vision fields. Shotton et al. [17] proposed the skeletal
tracking system licensed by Microsoft used by the XBOX
console with the first-generation Kinect. This approach used
a random forest classifier to classify the different pixels as
belonging to the different body parts. This work inspired
an open-source approach that was released by Buys et
al. [18]. This same work was then improved by adding
the OpenPTrack people detector module as a preprocessing
step [19]. Still, the performance of the detector remained

very poor for non frontal persons. In these last years, many
challenging Computer Vision problems have been finally
resolved by using Convolutional Neural Networks (CNNs)
solutions. Also single-view BPE has seen a great benefit from
these techniques [20], [21], [22], [14]. The impressive pose
estimation quality provided by those solution is usually paid
in terms of computational time. Nevertheless, this limitation
is going to be leveraged with newer network layouts and
Graphical Processing Units (GPU) architectures, as proved
by some recent works [22], [14]. In particular, the work of
Cao et. al [14] was one of the first to implement a CNN
solution to solve people BPE in real-time using a bottom-
up approach. The authors were able to compute 2D poses
for all the people in the scene with a single forward pass of
their CNN. This work has been adopted here as part of our
single-view detectors.

B. Multi-view body pose estimation

Multiple views can be exploited to be more robust against
occlusions, self-occlusions and FOV limitations. In [23] a
Convolutional Neural Network (CNN) approach is proposed
to estimate the body poses of people by using a low number
of cameras also in outdoor scenarios. The solution combines
a generative and discriminative approach, since they use a
CNN to compute the poses which are driven by an underlying
model. For this reason, the collaboration of the users is re-
quired for the initialization phase. In our previous work [19],
we solved the single-person human BPE by fusing the data
of the different sensors and by applying an improved version
of [18] to a virtual depth image of the frontalized person. In
this way, the skeletonization is only performed once, on the
virtual depth map of the person in frontal pose. In [24], a 3D
model is registered to the point clouds of two Kinects. The
work provides very accurate results, but it is computationally
expensive and not scalable to multiple persons. The authors
of [25] proposed a pure geometric approach to infer the
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Fig. 3: The single-view pipeline followed for each sensor. At each new frame composed of a color image (RGB), a depth
image and the calibration parameters, the 3D pose of each person in the scene is computed from the 2D one. Then, the
results are sent to the central computer which will compute the multi-view result.

multi-view pose from a synchronous set of 2D single-
view skeletons obtained using [26]. The third dimension is
computed by imposing a set of algebraic constraints from
the triangulation of the multiple views. The final skeleton is
then computed by solving a least square error method. While
the method is computationally promising (skeleton computed
in 1s per set of synchronized images with an unoptimized
version of the code), it does not scale with the number of
persons in the scene. In [27] a system composed of common
RGB cameras and RGB-D sensors are used together to record
a dance motion performed by a user. The fusion method
is obtained by selecting the best skeleton match between
the different ones obtained by using a probabilistic approach
with a particle filter. The system performs well enough for
its goal, but it does not scale to multiple people and requires
an expensive setup. In [28] the skeletons obtained from the
single images are enriched with a 3D model computed with
the visual hull technique. In [29] two orthogonal Kinects are
used to improve the single-view outcome of both sensors.
They used a constrained optimization framework with the
bone lengths as hard constraints. While the work provides
a real-time solution and there are no hard assumption on
the Kinect positions, it was tested just with one person and
two orthogonal Kinect sensors. Similarly to many recent
works [25], [28], [27], we use a single-view state-of-the-
art body pose estimator, but we augment this result with 3D
data and we then combine the multiple views to improve the
overall quality.

ITII. SYSTEM DESIGN

Figure 2] shows an overview of the proposed system.
It can be split into two parts: i) the single view, which

is the same for each sensor and it is executed locally
and ii) the multi-view part which is executed just by the
master computer. In the single-view part (see Figure 3)), each
detector estimates the 2D body pose of each person in the
scene using an open-source state-of-the-art single-view body
pose estimator. In this work, we use the OpenPoseE[lS],
[14] library, but the overall system is totally independent of
the single-view algorithm used. The last operation made by
the detector is to compute the 3D positions of each joint
returned by OpenPose. This fusion is done by exploiting
the depth information coming from the RGB-D sensor used.
The 3D skeleton is then sent to the master computer for the
fusion phase. This is done by means of multiple Unscented
Kalman Filters used on the detection feeds, as explained in

Section [II=C]

A. Camera Network setup

The camera network can be composed of several RGB-
D sensors. In order to know the relative position of each
camera, we calibrate the system using a solution similar
to our previous works [16], [15]. From this passage we
fix a common world reference frame ¥V and we obtain a
transformation 7}W, for each camera C in the network, which
transforms points in the camera coordinate system to the
world reference system.

B. Single-view Estimation of 3D Poses

Each node in the network is composed of an RGB-D
sensor and a computer to elaborate the images. Let *F =

Zhttps://github.com/CMU-Perceptual-Computing-Lab/
Openpose
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Fig. 4: The human model used in this work.

{fC,E D} be a frame captured by the detector R and
composed of the color image C and the depth image D all
in the R reference frame. The color and depth images in
§ are considered as synchronized. We then apply OpenPose
to RC obtaining the raw two dimensional skeletons & =
{So0,51,..,Sk}. Bach § = {j;|]0 < i < m} € G is a
set of 2D joints which follows the human model depicted in
Figure @] The goal of the single-view detector is to transform
6 in the set of skeletons & = {SO, 51, ... Sk} where each
S € & is a three dimensional skeleton. Given the RGB
image I, let’s consider a point p = (zp,y,) € I and its
corresponding depth d = proj(z,,yp). Considering (fz, fy)
and (¢, ¢,) respectively the focal point and the optical center
of the sensor, the relationship to compute the 3D point
Prp = (Xg,YR,ZR) in the camera reference system R is
explained in Equation [T}

Ty fz 0 cz| | Xr
P= Y| = 0 fy Cy Yr| = KPr (1)
d 0 0 1 ZRr

Since the depth data is potentially noisy or missing, we
compute the depth d associated to the point p = (z,,yp)
by applying a median to the set ®(p), as shown in Equa-

tions 2] 3

D(p = (xp,yp)) = {(z,9) [ [|(z,9) — (xp, yp)l| <€} (2)

d = ¢(p) = median{proj(z,y) | (z,y) € D(p)} (3

Given &, we then proceed to the calculation of S as shown
in Equation [4]

VO<j<k, S;j={ji=(z,y)|0<i<m}eé,
- . |K_1(£)|a: =R 4)
. 71 g .
Si=qdi=[IKUily| ,0<i<m,ed
¢(Ji)

Algorithm 1 The algorithm performed by the master com-
puter to decide the association between the different skele-
tons in a detection and the current tracks.

INPUT:
. W@i = {S0,51,...,Sk—1} - a new detection set from
sensor ¢ in the world reference frame
o T={Ty,T1,...,Ti_1} - the current set of tracked
persons pose.
e ¢ - maximum distance for a detection to be considered
for the association
OUTPUT:
o« M ={(5;,T;) €V &; x T} - the association between
the pose tracked and the new observations
e N CW &; - the detections without an association.
They will initialize a new track.
e ¥, C T - the tracks without an associated
observations. They will be considered for removal

1: procedure DATA_ASSOCIATION(W@i, T, €)
2 T 0

3 C «+ 0k><l

4: for each T; € ¥ do
5

6

7

for each S; €V &; do
z(j) < centroid(S;)
z(1, j) < *v that T; would have if S; were
associated to it*

8: Zyj¢—1(i) < *prediction step of /i, *
9: Zt( ) < Et(IC )

10: Zt(z’.]) = Zk(zmj) - 2'\t|t—1(i)

11 Cij < 2L (i,) - Se (i)~ - Ze(i, 4)
12: X « solve_Munkres(C)

13: for i € [0,{ — 1] do

14: for je[i+1,k—1] do

15: if Xij == 1 and C’ij < ¢ then
16: M — MU{(S;,T;)}

17: * update Ky, with S; *

18: N(—{SﬂﬂTj, (Si,Tj) EM}

19: IO%{E|£SJF (SJ7E) EM}
20: return M, N, T,

C. Multi-view fusion of 3D poses

The master computer is in charge of fusing the different
information it is receiving from the single-view detectors
in the network. One of the common limitations in mo-
tion capture systems is the necessity to have synchronized
cameras. Moreover, off-the-shelves RGB-D sensors, such
as the Microsoft Kinect v2, do not have the possibility to
trigger the image acquisition. In order to overcome this
limitation, our solution merges the different data streams
asynchronously. This allows the system to work also with
other RGB-D sensors or other low-cost embedded machine.
At time t, the master computer maintains a set of tracks
% ={To,T1, ..., T;} where each pose tracked 7T; is composed
of the set of states of m different Kalman Filters, one per
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MAF3, | >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100

single-camera network | MAF,o | >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100
Ours 54.9 4 58.6 424 4+ 474 424 + 400 777 + 744 791 + 827 700 + 61.8 517 +43.7 545+ 31.0 633 +342 978 £303 57.5+389 69.2 + 37.6
MAF3p | 620 £33.0 629 £320 63.1£345 833+£334 858£378 948+454 764£306 759+274 883£356 >100 854 £355 933 £370

2-camera network MAFy | 837 £41.8 840 £409 83.1£437 >100 >100 >100 99.2 £404 963 £38.0 >100 >100 >100 >100
Ours 207 & 172 21.0 & 17.5 243 +17.5 32.1 +23.0 334 +263 398 +£351 224 +£167 428 £172 597 £28.6 983 +£21.2 399 + 183 58.6 £ 27.1
MAF3 | 287 £ 164 31.0 £ 169 3224225 415+ 179 399+ 196 447 +295 402+ 150 487 + 128 586 +212 941 +261 521+178 578 +£279
4-camera network MAFy | 384 +£212 408 £21.7 416 £263 53.0£232 527+246 57.6+331 507+194 562+167 660 +245 966+ 308 612+231 67.5+316
Ours 227 £ 189 213 + 185 263 4+ 19.9 2254+ 221 267 +259 318 +£29.7 239+ 18.0 465+ 19.7 559 +£ 251 954 +£22.0 451 £ 205 49.1 + 252

TABLE I: The results of the
error on a reference camera (see Equation EI)

each joint, i.e: T; = {S(Ki0),S(K:i1),..., S(Kim)}. The
additional Kalman Filter K, is mantained for the data
association algorithm. At time ¢+1, it may arrive a detection
&; = {5, S1, ..., Sk} from the sensor ¢ of the network. The
master computer first refers the detection to the common

world coordinate system W (see Section [I1I-Al):
Ve =T & = {7V 5;|VS; € &}

Then, it associates the different skeletons in Wé\i as new
observations for the different tracks in ¥ if they belong to
them or initializes new tracks if some of the skeletons do
not belong to any 7; € T. At this stage, the system also
decides if a track is old and has to be removed from ¥.
This step is important to prevent T to grow big causing
time computing problems with systems which are running for
hours. We refer to this phase as data association. Algorithm|T]
shows how it is performed. The data association is done
by considering the centroid of each skeleton S contained
in the detection " &;. The centroid is calculated as the
chest joint j14 € S, if this is valid, otherwise it is replaced
with a weighted mean of the neighbor joints. Lines [6}{9]
of Algorithm [I] refers to the calculation of a cost associated
to the case if the detection pose S; would be associated to
the track T;. To calculate this, we consider the Mahalanobis
distance between the likelihood vector at time ¢ Z(i,j)
and X,(fC; ,): the covariance matrix of the Kalman filter
associated to the centroid of 7;. At this point, computing the
optimal association between tracks and detections is the same
as solving the Hungarian algorithm associated to the cost
matrix C; Line refers to the use of the Munkres algorithm
which efficiently computes the optimal matrix X with a 1 on
the associated couples. Nevertheless, this algorithm does not
consider a maximum distance between tracks and detections.
Thus, it may happen that a couple is wrongly associated in
the optimal assignment. For this reason, when inserting the
couples in M, we check also if the cost of the couple in the
initial cost matrix C' is below a threshold.

Once solved the data association problem, we can assign
the tracks ID to the different skeletons. Indeed, we know
which are the detection at the current time ¢ belonging to
the tracks in the system and, additionally, we know also
which tracks need to be created (i.e. new detections with no
associated track) and the tracks to consider for the removal.
Let n be the number of people in the scene, we used a set of
Unscented Kalman Filters & = {ICZ-j, 0<i<n,0<L5<
m} where the generic K;; € £ is in charge of computing
the new position of the joint j of the person ¢ at time ¢,

experiments. Each number represents the mean and the standard deviation of the reprojection

given the new detection received from one of the detectors
at time ¢ and the prediction of the filter K;; computed from
the previous position at time ¢t — 1 of the same joint j.

The state of each Kalman Filter KC;; is dimensioned with
the three dimensional position of the joint j. We used as
motion model a constant velocity model, since it is good to
predict joint movements in the small temporal space between
two good detections of that joint.

IV. EXPERIMENTS

The algorithm described in this paper does not require
any synchronization between the cameras in the networks.
This fact makes particularly difficult to find a fair compari-
son between our proposed system and other state-of-the-art
works. Thus, in order to provide useful indication on how
our system performs, we recorded and manually annotated a
set of RGB-D frames while a person was freely moving in
the field-of-view of a 4-sensors camera network. We compare
our algorithm with a baseline method called MAF (Moving
Average Filter), in which the outcome of the generic joint ¢
at time ¢ is computed as an average of the last & frames.
In order to be as fair as possible, we fixed & > 30 to
provide comparable results in terms of smoothness. We also
demonstrated the effectiveness of the multi-view fusion by
comparing our results with the poses obtained by considering
just one and two cameras of the same network. In this
comparison, we report the average reprojection error with
respect to one of the cameras, Cy. Equation [5]shows how this
error is calculated with YY P as the generic joint expressed
in the world reference system and p* as the corresponding
ground truth :

Crepr = |p* — K - T,50 WV P (5)

Table [I| shows the results we achieved. As depicted, the
proposed method outperforms the baseline in all the cases:
single-view, 2-camera network and 4-camera network. In the
first two cases (single and 2-camera network) the improve-
ment is from 50% to 60%, while, when multiple views are
available, it is from 18% to 32%. It is also interesting to note
that the most noisy joints are the ones relative to the legs as
confirmed by other state-of-the-art works [14], [20], [21].

A. Implementation Details

The system has been implemented and tested with Ubuntu
14.04 and Ubuntu 16.04 operating system using the Robot
Operating System (ROS) [30] middleware. The code is
entirely written in C++ using the Eigen, OpenCV and PCL
libraries.



V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented a framework to compute the
3D body pose of each person in a RGB-D camera network
using only its extrinsic calibration as a prior. The system
does not make any assumption on the number of cameras, on
the number of persons in the scene, on their initial poses or
clothes and does not require the cameras to be synchronous.
In our experimental setup we demonstrated the validity of our
system over both single-view and multi-view approaches. In
order to provide the best service to the Computer Vision
community and to provide also a future baseline method
to other researchers, we released the source code under the
BSD license as part of the OpenPTrack libraryﬂ As future
works, we plan to add a human dynamic model to guide
the prediction of the Kalman Filters to further improve the
performance achievable by our system (in particular for the
lower joints) and to further validate the proposed system on
a new RGB-Depth dataset annotated with the ground truth
of the single links of the persons’ body pose. The ground
truth will be provided by a marker based commercial motion
capture system.
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