
Efficient Semantic Segmentation for Visual
Bird’s-eye View Interpretation

Timo Sämann, Karl Amende, Stefan Milz,
Christian Witt, Martin Simon, and Johannes Petzold

Valeo Comfort and Driving Assistance,
Site Kronach (Germany),

Hummendorfer Str. 72, 96317 Kronach,
timo.saemann@valeo.com

Abstract. The ability to perform semantic segmentation in real-time
capable applications with limited hardware is of great importance. One
such application is the interpretation of the visual bird’s-eye view, which
requires the semantic segmentation of the four omnidirectional camera
images. In this paper, we present an efficient semantic segmentation that
sets new standards in terms of runtime and hardware requirements. Our
two main contributions are the decrease of the runtime by paralleliz-
ing the ArgMax layer and the reduction of hardware requirements by
applying the channel pruning method to the ENet model.

Keywords: Efficient Semantic Segmentation, Channel Pruning, Em-
bedded Systems, Bird’s-eye View Generation

1 Introduction

The understanding of scenes plays a key role in the technical realization of self-
driving vehicles, home-automation devices and augmented reality wearables. A
prerequisite for understanding scenes based on cameras is the semantic segmenta-
tion. The aim of semantic segmentation is to classify every pixel of an image into
meaningful classes. This task is typically realized with Deep Neural Networks
(DNNs). The generation of a top view of a vehicle by using four omnidirectional
cameras provides a 360◦ surrounding bird’s-eye view. The perception of the fully
surrounding environment is important in many traffic situations for automated
driving, e.g. autonomous parking. As shown in Figure 1 the interpretation and
understanding of such a surround view could be done by DNN based semantic
segmentation.

To enable the operation of DNNs on low power devices such as embedded systems
in real-time, they need to be implemented efficiently. [1] represents a Deep Neural
Network architecture (ENet) for real-time semantic segmentation. The ENet
is listed on the Cityscapes benchmark as the fastest model, while provides a

ar
X

iv
:1

81
1.

12
00

8v
1 

 [
cs

.C
V

] 
 2

9 
N

ov
 2

01
8



2

respectable quality that is sufficient for many application [2]. However, we were
able to show that the computational and memory requirements are too high for
generating the semantically segmented top view image on the NVIDIA Jetson
TX2 board in real-time.

In terms of runtime, the ArgMax layer represents a bottleneck on models for
semantic segmentation. It determines the indices of the maximum values along
the depth axis for the output feature maps. In most publications, this calculation
is excluded from the runtime measurement [1,3,4], since this calculation is very
time-consuming. In the case of a real-time application, this calculation is relevant
and cannot be ignored. By parallelizing the ArgMax calculation on the GPU,
the runtime of this layer can be drastically reduced on the NVIDIA TX2 board
compared to common CPU implementations.

Since we have to calculate the semantic segmentation four times to generate the
top view image and the available resources on embedded systems are scarce, we
reduced the number of parameters and thus the required GPU memory of the
ENet by a variant of the channel pruning method [5]. The idea of this method is
to prune channels1 of convolutional layer by a LASSO regression based channel
selection followed by a fine-tuning step for recover the weights. We extend the
idea of channel pruning for image classification to the task of semantic segmen-
tation and prune the ResNet based network ENet. For our experiments, we used
the ENet implementation of Caffe which is publicly available on GitHub2.

2 Releated Work

Efficiency is one of the key research areas for automated vehicles. Since the
real-time capability is needed it has become a mandatory requirement for DNN
applications. ENet is one of the most efficient Deep Neural Networks for seman-
tic segmentation [1]. The ENet consists of an encoder-decoder structure. Unlike
SegNet [4], which uses a symmetric encoder-decoder structure, the ENet uses a
larger encoder and a smaller decoder, which reduces the computational effort.
Additionally, ENet places great importance on early reduction of input infor-
mation. Calculation operations on input images with a lower resolution are less
complex and require less time. Furthermore, it uses asymmetric convolution pre-
sented in [6]. An n×n filter is divided into an n× 1 and 1×n filter. Both filters
applied one after another which results in the same output as a n×n filter once
applied, with the advantage of lower computational effort.

A massive amount of work on DNN acceleration has been done in the follow-
ing three fields [5]: 1. Optimized implementation [7], 2. Quantization [8] and 3.
Structured simplification [9]. However, the choice of the right method strongly
depends on the application task and the basic architecture of the used DNN.

1 The term channels is synonymous with feature maps.
2 https://github.com/TimoSaemann/ENet



3

Fig. 1. Illustration of top view generation on raw fisheye camera and semantically
segmented images by projecting the images on a plane parallel to the ground using the
camera model.



4

An optimized implemented method speeds up convolutions by special convo-
lution operations or approximations. Similar to this, quantization tries to ap-
proximate large floating point multiplications by less complex reduced floatings
points or single bit operations [8]. There are methods for sparse connection [10]
or tensor factorization [9], which decompose weights into subsets.

A famous method to improve residual block based architectures in terms of
efficiency and memory consumption is channel pruning [5]. The basic idea of
this method is to reduce the number of channels that serve a convolutional
layer as an input while maintaining the output of the layer. This means that
only channels are removed, which have a minor impact on the output. Those
channels can be found by performing a LASSO regression. Formally, suppose
we apply the filter W with n × c × kh × kw to a sample of an input X with
N × c × kh × kw, the output Y results with an output size N × n. The letter
c represents the number of channels, n the number of output feature maps, N
the number of input samples and kh, kw are the filter size. The channel pruning
method can be described as follows:

arg min
β,W

1

2N

∥∥∥∥∥Y −
c∑
i=1

βiXiW
T
i

∥∥∥∥∥
2

F

subject to ‖β‖0 ≤ c
′

‖·‖F designates the Frobenius norm. Xi and Wi designates the input data and
filter of a channel c with i = 1, . . . , c, respectively. β is a vector of size c and
takes either 0 or 1 for each element. If βi = 0, the channel with the corresponding
index i gets removed from the feature map. ‖β‖0 is less than or equal to c′, which
represents the maximum number of remaining channels.

Channel pruning could be separated into training based methods and inference-
time based methods [5], whereas the latter is extremely challenging especially for
very deep architectures, e.g. residual networks like ENet. [5] mentions a bottom-
up technique, where first channel pruning is applied to a single convolutional
layer. Afterwards, the method is stretched to the whole model. The results men-
tioned in [5] are promising for residual blocks.

The top or birds-eye view generation is a common state of the art feature in
almost every 360 degree surround view application for advanced driver assis-
tance systems [11]. The basic idea is a texture mapping of four omnidirectional
cameras, which are mounted with different viewing directions into a top view
plane (see Fig. 1). The aim of this feature is a better environmental perception.
Therefore, [12] fundamentally studied the semantic segmentation of such a top-
view. This is helpful for freespace and road marking detection within automated
driving applications. An efficiency investigation for such an application is miss-
ing. The aim of this work is to provide an efficient solution to enable semantic
top view interpretation for automated driving.



5

3 Methods

In this section, we first propose an efficient ArgMax implementation to accel-
erate the forward pass of the ENet. Then we describe how we prune the ENet
architecture using the channel pruning method.

3.1 ArgMax Implementation

The ArgMax layer is the last layer in a model for semantic segmentation. For
every pixel, the index of the maximum value along the depth axis is determined
(see Fig. 2). The resulting index corresponds to the class that the pixel will be
assigned to. Due to the serial implementation on the CPU, which is used by
Deep Learning Frameworks such as Caffe [13], the layer becomes a bottleneck
especially for embedded systems such as the NVIDIA TX2 board. In order to
get a high frame rate on embedded hardware, we need to implement the ArgMax
layer on the GPU.

The ArgMax calculation for a pixel requires the values along the depth axis, as
shown in Fig. 2. In theory, it is possible to calculate the ArgMax for all pixels
simultaneously without conflicts. We used this observation and implemented a
GPU version for the ArgMax layer with CUDA in Caffe. We implemented our
custom ArgMax kernel which calculates the ArgMax for a given pixel along
the depth axis. Every CUDA thread computes the ArgMax for exactly one
pixel. Since there are no dependencies or conflicts between the pixels during
the ArgMax calculation, we can use the maximum number of threads and have
to read each value from the input exactly once. In this way, we achieve a high
degree of parallelism. The results and speed of our implementation are presented
in the section 5, Table 1.

Fig. 2. Example of the ArgMax operation for one pixel.



6

3.2 ENet’s Channel Pruning

ENet’s Channel Pruning consists mainly of two steps.

PReLU

1 x 1 Conv

PReLU

3 x 3 Conv

PReLU

1 x 1 Conv

Eltwise

Fig. 3. Example residual
block as it occurs several
times in the ENet archi-
tecture.

The first step is to select the channels that can be
pruned and the second step is the fine-tuning step
where the weight parameters are recovered in a fine-
tuning.

The ENet architecture is based on many consecutive
residual blocks. An example residual block is shown
in figure 3. Please note that the batch normalization
and dropout layer have been merged into the convo-
lutional filters. In each residual block, every second
and third convolutional (conv) layer was pruned.

In the middle layer (3×3 conv), the number of chan-
nels was reduced by a certain ratio. The depth of the
filter of the following convolutional layer (1× 1 conv)
has been adapted accordingly. The selection of the
channels and filter depths to be pruned was done us-
ing the LASSO regression as described in section 2.

The first layer of the residual block was not pruned
because for the practical implementation a so-called
feature map sampling layer has to be applied before
the first convolutional layer.

[5] claims that the runtime of the feature map sam-
pling layer is negligible, but we found that the run-
time is longer than the saved runtime due to the lower
computational effort resulting from the smaller num-
ber of channels.

The number of channels to be pruned depends on the channel factor. This value
is divided by the number of existing channels and thus determines the ratio of the
pruned channels. The selection of the appropriate channel factor value is crucial
for the success of the pruning. Therefore, the choice of this value is discussed
in more detail in the next section 4. In the last residual block, no pruning was
performed, because the number of channels is only 4 and a reduction would affect
the quality very negatively.

In the fine-tuning step, we used again the customize training data set. In contrast
to the previous training from the scratch, which passed through 150 epochs, the
fine-tuning step can be limited to a few epochs (3 to 5) in order to achieve
network convergence. Since the pruned ENet requires less GPU memory for
training, the batch size can be increased from 6 to 11 per GPU. The learning
rate was set to 10−8, which is ten times higher than the learning rate after 150



7

epochs of training from the scratch. The remaining training parameters have
been adopted from [1].

4 Channel Factor Selection

In our experiments, we tested various channel factors which we use to reduce the
feature maps. We followed the approach of [5] and chose a high channel factor
of 1.5 for the shallower residual blocks and a lower factor of 1.25 for the deeper
residual blocks. We found out that the quality of the model decreased sharply and
reversed the ratio of the channel factor. Now the quality of the model was only
slightly reduced. This leads us to the assumption that the number of channels in
the shallower residual blocks should not or only slightly be reduced. The reason
for this might be, that the number of feature maps in the shallower residual
blocks is lower than in the deeper ones. Therefore, we reduced the channel factor
of the shallower residual blocks from 1.25 to our final value of 1.1. Since the
number of channels in the shallower residual blocks is quite small (16), the
benefit of a larger reduction is low. As a result, we find these values as a better
compromise between saving computational effort and losing quality.

5 Results

By parallelizing the ArgMax calculation on the GPU, the runtime of this layer
can be drastically reduced on the NVIDIA TX2 board compared to common
CPU implementations. For an input image with a resolution of 640 px× 400 px,
the runtime can be reduced from 92 ms to 0.05 ms. A comparison of the perfor-
mance for the respective CPU and GPU implementation of the ArgMax layer
can be found in Table 1. For larger image resolutions, the factor is even greater,
since the parallelization can be better utilized.

The channel pruning method applied to the ENet allowed us to reduce the re-
quired GFLOPs from 1.87 to 1.34 for an input size of 640 px× 400 px as shown
in Table 2. Furthermore, we were able to reduce the number of parameters
from 363 k to 255 k. Accordingly, the required memory of the parameters de-
creases from 1.49 MB to 1.06 MB (FP32). Due to the lower number of FLOPs,
the inference time could be increased on the CPU by 17.7%. After all, a runtime
improvement from 11.06 fps to 11.53 fps could be achieved on the GPU. All com-
putational measurements were done on the NVIDIA TX2 board with CUDA 9.0
and cuDNN 7.0.

To compare quality results we used mean intersection over union (mIoU) and
global accuracy. The mIoU of our 20 classes dropped from 53.8% to 51.4% of our
custom fisheye test dataset. The IoU values for each class are shown in Table 3.
Interestingly, the IoU decreases especially for classes with a small pixel density
(e.g. pole). For classes with a high pixel density, the value remains the same or
even increases (e.g. road), which explains the slightly increased global accuracy,
which has increased from 94.04% to 94.12%.



8

Table 1. Comparison of performance using CPU and GPU implementation of ENet
for an input image size of 640 px × 400 px.

Network ArgMax layer Performance

CPU CPU 0.23 fps

GPU CPU 5.46 fps

GPU GPU 11.06 fps

Table 2. Comparison of hardware requirements and performance of ENet (including
ArgMax calculation) for an input image size of 640 px × 400 px.

Modell GFLOPs Paramter Model size
(FP32)

Performance
CPU

Performance
GPU

ENet 1.87 363 k 1.49 MB 0.23 fps 11.06 fps

ENet pruned 1.34 255 k 1.06 MB 0.28 fps 11.53 fps

6 Conclusion

We have proposed a parallelized ArgMax Layer implementation that dramati-
cally improves runtime for semantic segmentation models. For an input image
size of 640 px × 400 px, the runtime of the ArgMax layer on the NVIDIA TX2
board could be reduced by a factor of 1840.

In addition, the hardware requirements for the ENet could be significantly re-
duced by channel pruning. The number of required GFLOPs could be reduced
by about 30%, which allows a theoretical speed up of 1.4.

Despite this significant reduction in the hardware requirements of the already
efficient ENet model, the IoU value has fallen slightly only for small classes
(e.g. pole). These results are essential for embedded systems to use semantic
segmentation in a real-time capable application such as the generation of the se-
mantically segmented birds-eye view. In the future, we plan to extend the channel
pruning method to additional layers of the ENet to further reduce hardware re-
quirements. Furthermore, we plan to work on a more comprehensive fine-tuning
step to maintain the quality of the ENet at a similar level as before pruning.

Acknowledgments

We would like to thank Senthil Yogamani and our colleagues at Valeo Vision
Systems in Ireland for collaboration on our dataset using automotive fisheye
cameras. We would like to thank Valeo, especially Jörg Schrepfer, for the oppor-
tunity doing fundamental research.



9

Table 3. Representation of the Intersection over Union (IoU) values per class for
comparison of ENet before and after pruning.

Classes IoU ENet IoU ENet pruned

Road 95.4% 95.6%

Sidewalk 75.1% 75.2%

Building 87.3% 87.2%

Wall 65.3% 63.8%

Fence 45.1% 42.7%

Pole 30.7% 23.4%

Traffic light 41.5% 39.1%

Traffic sign 27.1% 24.9%

Vegetation 80.1% 80.2%

Terrain 24.6% 25.0%

Sky 95.9% 96.1%

Person 42.2% 40.3%

Rider 13.6% 07.3%

Car 83.1% 82.2%

Truck 40.3% 35.4%

Bus 51.3% 47.3%

Motorcycle 15.0% 07.5%

Bicycle 47.9% 43.0%

Road markings 61.2% 61.2%

Mean IoU 53.8% 51.4%

References

1. Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network
architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147
(2016)

2. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., Schiele, B.: The cityscapes dataset for semantic urban scene
understanding. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. (2016) 3213–3223

3. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. (2015) 3431–3440

4. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 39(12) (2017) 2481–2495

5. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural
networks. In: International Conference on Computer Vision (ICCV). Volume 2.
(2017) 6



10

6. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. (2016) 2818–2826

7. Bagherinezhad, H., Rastegari, M., Farhadi, A.: Lcnn: Lookup-based convolutional
neural network. (2016)

8. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet clas-
sification using binary convolutional neural networks. CoRR abs/1603.05279
(2016)

9. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural net-
works with low rank expansions. CoRR abs/1405.3866 (2014)

10. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural networks. CoRR abs/1506.02626 (2015)

11. Zhang, B., Appia, V.V., Pekkucuksen, I., Liu, Y., Batur, A.U., Shastry, P., Liu,
S., Sivasankaran, S., Chitnis, K.: A surround view camera solution for embedded
systems. 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (2014) 676–681

12. Deng, L., Yang, M., Li, H., Li, T., Hu, B., Wang, C.: Restricted deformable
convolution based road scene semantic segmentation using surround view cameras
(2018)

13. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014)


	Efficient Semantic Segmentation for Visual Bird's-eye View Interpretation

