
KittingBot: A Mobile Manipulation Robot for
Collaborative Kitting in Automotive Logistics

Dmytro Pavlichenko, Germán Mart́ın Garćıa, Seongyong Koo, and
Sven Behnke

Autonomous Intelligent Systems, Computer Science Institute VI, University of Bonn,
Endenicher Allee 19a, 53115 Bonn, Germany

pavlichenko@ais.uni-bonn.de

Abstract. Individualized manufacturing of cars requires kitting: the
collection of individual sets of part variants for each car. This challeng-
ing logistic task is frequently performed manually by warehouseman. We
propose a mobile manipulation robotic system for autonomous kitting,
building on the Kuka Miiwa platform which consists of an omnidirec-
tional base, a 7 DoF collaborative iiwa manipulator, cameras, and dis-
tance sensors. Software modules for detection and pose estimation of
transport boxes, part segmentation in these containers, recognition of
part variants, grasp generation, and arm trajectory optimization have
been developed and integrated. Our system is designed for collaborative
kitting, i.e. some parts are collected by warehouseman while other parts
are picked by the robot. To address safe human-robot collaboration, fast
arm trajectory replanning considering previously unforeseen obstacles is
realized. The developed system was evaluated in the European Robotics
Challenge 2, where the Miiwa robot demonstrated autonomous kitting,
part variant recognition, and avoidance of unforeseen obstacles.

1 Introduction

Although robot manipulators and autonomous transport vehicles are widely used
in manufacturing, there are still plenty of repetitive tasks, which are performed
by human workers. Automation of such tasks would allow for relieving work-
ers from repetitive and dull activities, which may cause harm to their health.
Furthermore, automation has the potential to increase productivity and quality.

In this paper, we address the task of kitting in automotive logistics, which
is frequently performed manually by warehouseman. Kitting became necessary,
because car manufacturing has been individualized. Each customer configures its
car, such that for each car sets of part variants must be collected and delivered
to the assembly line just in time. Kitting is performed in a large storage area,
called automotive supermarket, where all part variants can be collected from
transport boxes and pallets. For each manufactured car, an individual order for
the needed part variants is generated. A warehouseman collects the parts in the
automotive supermarket and sends them to the assembly line as a kit.

ar
X

iv
:1

80
9.

05
38

0v
1

 [
cs

.R
O

]
 1

4
Se

p
20

18

2

a) b)

Fig. 1: a) Kuka Miiwa (KMR iiwa) robot performing the kitting; b) Three types
of parts used in the kitting task.

We propose a mobile manipulation robotic system for autonomous kitting,
building on the Kuka Miiwa platform [1], which consists of an omnidirectional
base, a 7 DoF collaborative iiwa manipulator, cameras, and distance sensors. The
robot performing the kitting and three parts representing the kit are shown in
Fig. 1.

In order to effectively solve the kitting task, several subtasks must be ad-
dressed. First of all, the robot has to navigate precisely within the supermarket
in order to reach target locations for part collection. Upon arrival at the loca-
tion, it is necessary to detect the container with parts and to estimate its pose.
The robot has to detect the parts inside the container and must plan suitable
grasps. Collision-free arm motions must be planned and executed and the part
has to be placed in the kit which is transported by the robot.

Developing an autonomous robotic system for kitting is a challenging task,
because of the high degree of variability and uncertainty in each of its subtasks.
Our system is designed for collaborative kitting, i.e. some parts are collected
by warehouseman while other parts are picked by the robot. To address safe
human-robot collaboration, fast arm trajectory replanning considering previ-
ously unforeseen obstacles must be realized.

In this paper, we present our approaches for perception and manipulation,
as well as system integration and evaluation. We solve the perception task with
a robust pipeline, consisting of the steps:

– Container detection and pose estimation,

– Part segmentation and grasp generation, and

– Classification of the grasped part before it is put into the kit—to verify that
it is the correct part.

In order to perform manipulation effectively, we utilize an arm trajectory
optimization method with a multicomponent cost function, which allows for ob-
taining feasible arm trajectories within a short time. All developed components

3

were integrated in a KittingBot demonstrator. The developed system was evalu-
ated at the Showcase demonstration within the European Robotics Challenge 2:
Shop Floor Logistics and Manipulation1, where we participated as a challenger
team together with the end user Peugeot Citroën Automobiles S.A. (PSA)2. We
report the success rates for each step of the kitting pipeline as well as the overall
runtimes.

2 Related Work

In recent years, interest in mobile manipulation robots increased significantly.
Many components necessary for building an autonomous kitting system have
been developed. Integrating these to a system capable of performing kitting
autonomously is challenging, though. In this section, we give overview of au-
tonomous robotic systems for kitting in industrial environments.

An early example of mobile bin picking has been developed by Nieuwen-
huisen et al. [2]. They used the cognitive service robot Cosero [3] for grasping
unordered parts from a transport box and delivering them to a processing sta-
tion. Part detection and pose estimation was based on depth measurements of a
Kinect camera and the registration of graphs of geometric primitives [4]. Grasp
planning utilized local multiresolution representations. The authors report suc-
cessful mobile bin picking demonstrations in simplified settings, but their robot
was far from being strong and robust enough for industrial use.

Krueger et al. [5] proposed a robotic system for automotive kitting within the
STAMINA3 project. The large mobile manipulation robot consists of an indus-
trial manipulator mounted on a heavy automated guided vehicle (AGV) plat-
form. The system utilizes the software control platform SkiROS [6] for high-level
control of the mission, which is composed of skills [7]. Each skill solves a specific
sub-task: i.e. detecting a part, generating a grasp, etc. [8]. Such an architecture
allows for fast definition of the global kitting pipeline for each specific use case,
which can be performed by the end user. Crosby et al. [9] developed higher-level
task planning within the STAMINA project. SkiROS is used to bridge the gap
between low-level robot control and high-level planning. The STAMINA system
was tested in a simplified setting within the assembly halls of a car manufacturer,
where the robot successfully performed full kitting procedures for kits of one,
three, four, and five parts multiple times. Execution speed was slow, though,
and safe human-robot collaboration has not been addressed.

Krug et al. [10] introduced APPLE—a system for autonomous picking and
palletizing based on a motorized forklift base. The system is equipped with
a Kuka iiwa manipulator. The authors propose a grasp representation scheme
which allows for redundancy in the target gripper pose [11] [12]. This redundancy
is exploited by a local, prioritized kinematic controller which generates reactive
manipulator motions on-the-fly. The system has a basic safety laser scanner as

1 EuRoC Challenge 2: http://www.euroc-project.eu/index.php?id=challenge_2
2 Peugeot Citroën Automobiles S.A.: https://www.groupe-psa.com
3 European FP7 project STAMINA: http://stamina-robot.eu

http://www.euroc-project.eu/index.php?id=challenge_2
https://www.groupe-psa.com
http://stamina-robot.eu

4

well as a camera-based system for human detection. Human workers are assumed
to be wearing special reflective clothing. Tests showed that the system is capable
of performing pick and place tasks in a human-safe manner. An interesting ex-
ample of such a task was to first pick an empty pallet with a forklift, navigate to
the loading zone, load the pallet using the arm, and finally transport the loaded
pallet to the destination zone.

A similar task routine is performed in a completely different application do-
main: medical care. In hospitals, nurses are required to collect necessary supplies
and deliver them to the patients. This task creates a constant dull workload for
nurses, who could spend the working time in a much more patient-oriented way.
Diligent Robotics4 designed a robot which should perform this routine. The hos-
pital environment in many cases is more challenging than industrial production
lines, since the narrow corridors are often crowded with patients.

Srinivasa et al. [13] address mobile manipulation tasks in household envi-
ronments. HERB—a dual-armed robot with a human-like upper-body—is used
for this purpose. The authors compose a manipulation planning module out
of several popular planners and trajectory optimizers. This allows to effectively
perform complex manipulation tasks. For instance, the approach has been tested
with a task when the robot has to load a plate, a bowl, and a glass into a tray.
Finally, the tray has to be lifted for further transportation. The last operation
required the use of both arms. In order to configure the high-level planner, the
user has to specify an action graph.

One unresolved issue with all of the above systems is that due to the large
number of different objects, a large variety of grasps is required to safely ma-
nipulate them. A robotic system with automatically exchangeable grippers does
not seem to be a feasible solution, since there may be dozens of different grippers
needed. Another possible solution would be to use two grippers with the flexi-
bility of human hands, but these are not available. Our approach to this issue
is collaborative kitting: using a simple and robust robotic gripper for picking
parts with simple structure in collaboration with warehouseman who pick more
complex or fragile parts.

3 System Overview

The developed system is based on the Kuka Miiwa (KMR iiwa) robot. The robot
has a compact omnidirectional base with four Mecanum wheels. The omnidirec-
tional drive allows for a very precise and smooth navigation even in the areas
with limited free space. The base is equipped with multiple laser scanners on
its sides in order to produce 360◦ distance measurements. On the top surface of
the base, the 7 Degrees of Freedom (DoF) collaborative Kuka iiwa arm and a
vertical sensor pole with pan-tilt unit (PTU) are mounted. The PTU carries a
stereo camera system and a time-of-flight (ToF) depth camera. The components
of this system complement each other and thus avoid sensor-specific problems.

4 Diligent Robotics: http://diligentrobots.com

http://diligentrobots.com

5

Fig. 2: Simplified scheme of the proposed kitting system. Light-blue: Kuka soft-
ware components. Green: components developed by us.

This sensor system is further referenced as Pan-Tilt Sensor System (PTSS). A
stereo camera is attached at the wrist of the iiwa arm. While the PTSS allows to
have a global view on the manipulation workspace, the wrist camera allows to
measure the manipulated objects more precisely. In order to effectively process
the data from all the sensors, the robot has four Core-i7 onboard computers as
well as an FPGA for the stereo processing. The top surface of the robot base is
flat and has a lot of free space, which is used to place a kit storage system. In
our experiments, we use a very simple kit storage system: three plastic boxes.

Fig. 2 illustrates the main components of our system and the information
flow between them. The Kuka KMR iiwa robot comes with a low-level software
stack, as well as a higher-level navigation and mapping stack. We used these
components together with ours in order to realize a complete robotic system for
autonomous kitting. The highest level of the software stack is represented by a
finite state machine (FSM). Its parameters define the whole kitting procedure:
how many parts to pick up, where to pick up, where to deliver, etc. The FSM
orchesters work of all three main components of our system: perception, ma-
nipulation planning, and navigation planning. The perception component uses
sensory input from the wrist camera and the PTSS to detect the container with
parts, estimate its pose, detect the parts, and define the grasp. The manipulation
planning module takes as input raw 3D sensory data for collision avoidance as
well as results from the perception module. Finally, the manipulation module
produces an arm trajectory to reach the grasp and to deliver the part into the
kit. The navigation module performs mapping and path planning, as well as
dynamic obstacle avoidance.

4 Perception

The location of transport boxes and pallets in the automotive supermarket is
known in advance only to a limited degree of precision: boxes are manually
placed and their pose can change while picking parts, placing other boxes, etc.

6

Hence, it is necessary to estimate the exact pose of the box in the environment.
Similarly, part poses within the containers vary and wrong part variants might
be accidentally placed in the containers. In this section, we present the methods
used for the perception of containers, segmentation of parts, and part variant
recognition.

4.1 Container Detection

We use the approach of Holz et al. [14] for the detection and localization of
containers in RGB-D data. The method is tailored for finding containers when
the upper part of the container is visible. It is based on extracting lines along the
edges in the RGB-D image and finding the best fitting models of the container
we are looking for. The container detection and localization pipeline is organized
in three stages:

– Detect edges in both the color image and the depth image,
– Fit lines to the detected edge points, and
– Sample subsets of lines and fit parametrized models of the containers to the

subset.

The best fitting candidate gives both the lines forming the top of the box and
the pose of the box.

Edge detection We follow the approach of Choi et al. [15] for detecting edges
in RGB-D data. The method proposes the Canny edge detector for finding edges
ERGB in the color image. In the depth image, we inspect the local neighborhood
of points, focus on points at depth discontinuities, and identify occluding edges
by selecting those points ED that are closer to the camera. In addition, we ef-
ficiently compute local covariance matrices using a method based on integral
images [16]. From the local covariance matrices, we compute local surface nor-
mals and curvature to obtain convex Econv, and concave edges. For the next
processing steps, we combine all points at color edges, occluding edges, and con-
vex edges to a set of edge points E = ERGB ∨ED ∨Econv, E ⊆ P , where P is a
point cloud.

Line detection Our line detection approach is based on RANSAC. On each
iteration, we select two points, p and q, from the set E and compute a line
model: point on the line p and direction of the line q − p. We then determine
all inliers in E which support the line model by having distance to it below
threshold εd. The line model with the largest number of inliers is selected as the
detected line l. If the number of inliers of line l exceeds the minimum number of
inliers, l is added to the set of lines L. We then remove the inliers of l from E
and continue detecting further lines. If the residual number of points in E falls
below a threshold, or the minimum number of inliers for the line segments is not
reached, the line detection is stopped.

7

a) b)

Fig. 3: Box detection. a) Raw image from the pan-tilt camera; b) Point cloud with
detected edge points (cyan) and line segments (random colors). Best matched
model is shown as yellow rectangle.

Line validation After the line detection, we perform a validation step which
is based on two restrictions:

– Connectivity Restriction. The inliers of a detected line may lie on different
unconnected line segments. While partial occlusions can cause multiple un-
connected line segments on the edges of the box, we cluster the inliers and
split the detected line into multiple segments in case the box should be fully
visible. If the number of points in a cluster falls below the minimum number
of inliers for line segments, it is neglected.

– Length Restriction. Line segments which are shorter than the shortest edge
in the model and longer than the longest edge in the model are neglected.
To account for noise, missing edge points, or other errors, a deviation of 20%
from these thresholds is allowed.

An example of detected edges and lines is shown in Fig. 3.

Model sampling and validation In order to detect the container, a subset
of the detected line segments is selected. We select N line segments where N is
the number of line segments in the parametrized model. That is, we sample as
many line segments as contained in the model of the container. As a result, we
obtain tuples of line segments (l0, ..., lN). To avoid repetitively re-checking the
same tuples, we use a hash table in which sampled tuples are marked as being
processed.

We discard tuples of line segments which are not compatible with the con-
tainer model. The model contains four edges which are pairwise parallel and
perpendicular to each other. If the tuple of sampled line segments is valid, we
continue to register the model against the sampled line segments. For the model
registration, we sample points from the given parametrized container model in
order to obtain a source point cloud P for registration. In addition, we extract
the inliers of the sampled segments to form a single target point cloud Q for

8

a) b)

Fig. 4: Part segmentation. a) Raw image from the pan-tilt camera. b) Three
segmented parts (green, blue and red) with their corresponding grasping poses.

registration. In contrast to extracting the inliers for the target point cloud, the
source point cloud of the model only needs to be sampled once.

Iterative registration algorithms align pairs of 3D point clouds by alternately
searching for correspondences between the clouds and minimizing the distances
between matches [17]. In order to align a point cloud P with a point cloud Q,
the ICP algorithm searches for the closest neighbors in Q for points pi ∈ P
and minimizes the point-to-point distances dTij = qj − Tpi of the set of found
correspondences C in order to find the optimal transformation T ∗:

T ∗ = arg min
T

∑
(ij)∈X

||d(T)
ij ||

2
. (1)

Finally, we compute a confidence c that is based on the overlap between the
model and the sampled line segments: c = |C|/|P |, where |C| is the number of
corresponding points within a predefined distance tolerance εd, and |P | is the
number of points in the generated model point cloud. In case of a complete
overlap, the confidence c is roughly 1. We select the best match to estimate the
pose of the container.

4.2 Part Segmentation

In order to segment the parts that come in the boxes, we use the estimated pose
of the box from the previous step. This gives us an observation pose for the wrist
camera above the box, which is used to have a clear view of the inside of the
container. We use the detected box borders to extract the points in the obtained
point cloud that correspond to the contents of the box.

Engine support variants are segmented using Euclidean clustering on the box
content point cloud. The centroid and principal axes of the clusters are used to
compute the grasping poses. An example of the segmented parts is shown in
Fig. 4

To determine grasps for the engine pipes in the extracted container content,
we cluster the extracted point cloud into cylinders and select the centroid of
the highest cylinder as the grasping point. The orientation of the grasp pose is
chosen according to the principal axis of the cylinder to be grasped and aligned

9

Fig. 5: Neural network used to recognize the variant of an engine support part.

with the local coordinate frame of the detected container in order to approach
the part straight from the top of the container.

4.3 Parts Variant Recognition

In real production warehouses, the locations of containers with parts may be
mixed up, or a part of a wrong type may accidentally enter a container with
other parts. In order to detect such situations, we perform part recognition. The
recognition takes place after the part was grasped and lifted up in the air, since
in such position it is unoccluded and may be easily observed by the PTSS.

A convolutional neural network, shown in Fig. 5, is used to perform the
recognition. The network takes a 64×64×1 depth image as input. Metal parts
are shiny and thus shape features may be not visible on the RGB image. The
use of depth information helps to overcome this issue. The first part of the
network consists of four convolutional layers, each followed by a pooling layer.
The final part consists of four fully connected layers. The last layer outputs two
values through a softmax function. The numbers represent the probability of
the object belonging to the first and the second class, respectively. We used this
network to distinguish between two types of engine supports, as these parts look
similar and could be mixed.

In order to train the model, available CAD models of the parts were used to
render depth maps. For each variant, 10,000 different poses were used in order
to produce synthetic data. To obtain an input to the network in the real world,
we project the center of the TCP to the pan-tilt depth image and crop an image
window that contains the part.

5 Manipulation

Given a grasp pose from the perception module, it is necessary to plan a tra-
jectory for the robotic arm to reach the corresponding pre-grasp pose. The tra-
jectory has to be smooth and must avoid any collisions with the environment
or the robot itself. Furthermore, it has to satisfy constraints on orientation of
the end-effector. Moreover, the duration of the trajectory has to be as short as
possible, since it directly influences the overall time spent for the kit comple-
tion. For the same reason, planning time must be short. Finally, it is necessary
to constantly track the future part of the trajectory during execution to detect
any unforeseen collisions with dynamic objects. In case when future collision is

10

detected, the trajectory has to be replanned as fast as possible and the execution
should continue.

To fulfill these requirements, we use our trajectory optimization method [18]
which is based on STOMP [19]. The method iteratively samples noisy trajectories
around a mean trajectory and evaluates each of them with a cost function. Then
the mean is shifted in the direction of reducing costs. Iterations continue until
one of the termination criteria is met.

The trajectory Θ is defined as a sequence of N keyframes in joint space.
Start and goal configurations are fixed, as well as the number of keyframes N .
The cost of the trajectory Θ is defined as a sum of costs of transitions between
adjacent keyframes θi:

q(Θ) =

N−1∑
i=0

q(θi,θi+1). (2)

We propose a cost function which consists out of five components:

q(θi,θi+1) =qo(θi,θi+1) + ql(θi,θi+1) + qc(θi,θi+1)

+qd(θi,θi+1) + qt(θi,θi+1),
(3)

where qo(θi,θi+1) is a component which penalizes being close to obstacles,
ql(θi,θi+1) penalizes exceeding of joint limits, qc(θi,θi+1) penalizes task spe-
cific constraints on a gripper position or/and orientation, qd(θi,θi+1) penalizes
long durations of the transitions between the keyframes and qt(θi,θi+1) is a
component that penalizes high actuator torques. Each cost component qj(., .) is
normalized to be within [0, 1] interval and has an importance weight λj ∈ [0, 1]
attached. This allows to prioritize optimization by manipulating weights λj .

In order to speed up the optimization process, we utilize two phases. During
the first phase, a simplified cost function is used. It consists of collision costs qo,
joint limit costs ql, and gripper constraints costs qc. As soon as the first valid
solution is found, the second phase begins, where the full cost function q(., .)
(as described in Equation 3) is used. Optimization continues until one of the
termination criteria is met.

6 Experiments

In order to assess the designed system, we performed several experiments during
the EuRoC Showcase evaluation in the lab of the Challenge 2 host DLR Institute
of Robotics and Mechatronics in Oberpfaffenhofen, Germany, under severe time
constraints and the supervision of judges. The experiments included tests of
isolated components as well as full kitting procedures. All experiments have
been done on the real robot. In this section, we describe the test procedures and
present obtained results.

6.1 Showcase Setup

The kitting experiment was performed in a simplified supermarket of parts,
designed by us. The kit consisted out of three automotive parts, supplied by our
end-user partner PSA:

11

Fig. 6: Map of the automotive supermarket. A container with Engine Support 1
parts is located on the first table. Containers with Engine Support 2 parts and
Engine Pipes are located on the second table. CAD models of the parts are
shown on the sides of the map.

– Engine Support 1: metal part with shiny surface.
– Engine Support 2: metal part with shiny surface, very similar to Engine

Support 1.
– Engine Pipe: black flexible pipe made out of rubber.

Each part type is provided in a separate container. Both engine supports were
placed in the containers with slots, so that each part is positioned roughly verti-
cally, perpendicular to the bottom of the container. Engine pipes were put into
their container without any order, making picking more challenging.

The map of the automotive supermarket as well as CAD models of the parts
are show in Fig. 6. Containers with parts were located on tables in opposite sides
of the 10×5 m room. The container with Engine Supports 1 was located on the
first table. Containers with Engine supports 2 and Engine pipes were provided
on the second table.

6.2 Kitting

The procedure of our kitting scenario was defined as follows: the robot starts
in the middle of the supermarket. It has to move to the first table and pick up
Engine Support 1 and place it in the first kitting compartment on the robot. After
that, the robot has to move to the second table and pick up Engine Support 2
and place it in the second kitting compartment. Finally, the robot has to pick
up Engine Pipe and place it in the third kitting compartment. To demonstrate
that the kit is ready to be delivered to the assembly line, the robot moves away
from the table.

In order to demonstrate the capability of our system, we performed two
kitting runs, as described above. The robot picking the Engine Support 1 is
shown in Fig. 7. Videos of the experiments are available online5. We measured

5 Experiment video: http://www.ais.uni-bonn.de/videos/IAS_2018_KittingBot

http://www.ais.uni-bonn.de/videos/IAS_2018_KittingBot

12

a) b) c) d) e)

Fig. 7: Picking of Engine Support 1. a) Observation pose; b) Part grasped; c)
Part lifted; d) Part transported to the drop pose; e) Part placed into the kitting
compartment on the robot.

the success rate of picking and placing for each part type, as well as the overall
runtime. The results are presented in the Table 1. One can observe that placing
the parts never failed. Picking parts succeeded on all but one case: picking of
Engine Pipe in the first run was not successful. The placing task is much easier
than picking, since the positions of the kitting boxes on the robot are known
precisely. Picking of the engine pipe failed because the robot attempted to grasp
it above the widest part of the pipe. Consequently, the grasp was not firm enough
and the part slipped from the gripper.

Table 1: Pick and place success rates and runtime of kitting.

Run 1 Run 2

Parts successfully picked 2/3 3/3

Engine Support 1 + +

Engine Support 2 + +

Engine Pipe - +

Successful grasps 2/3 3/3

Successful placements 2/2 3/3

Runtime [s] 759 809

6.3 Additional Experiments

In addition to the complete kitting procedure, we tested several components in
isolation. In this subsection we present the obtained results.

Part Variant Recognition. In this experiment, we demonstrated the capa-
bilities of part variant recognition module. First, we pick up Engine Support 1
and recognize which part is in the gripper. Then we pick up Engine Support 2
and perform the recognition again. The obtained images of the parts are shown
in Fig. 8. Both parts were recognized correctly.

13

a) b)

Fig. 8: Recognition of the part variant. a) Raw image of the picked up Engine
Support 1; input depth image shown in the bottom-right corner. b) Raw image of
the picked up Engine Support 2; input depth image in the bottom-right corner.

a) b)

Fig. 9: Replanning of the trajectory to avoid an unforeseen obstacle. a) The
obstacle is inserted during execution. The trajectory is replanned. Red: initial
trajectory. Blue: replanned trajectory. b) Arm, avoiding the new obstacle.

Unforeseen Collision Avoidance. To demonstrate the ability of our system
to deal with obstacles which appear during trajectory execution, we performed
a separate experiment. The robot arm had to move from the observation pose
to the pose above the kitting boxes. After the trajectory had been planned and
the execution was started, an obstacle was inserted on the way. The system
continuously tracks the future part of the trajectory and checks for obstacles
during trajectory execution. The future collision was detected, the execution
was stopped and the trajectory was replanned, taking the new obstacle into
consideration. Both initial and replanned trajectories, as well as the arm avoiding
the obstacle are shown in Fig. 9. The replanning took 0.39 seconds, which in
principle allows to perform replanning without stopping the execution, in case
the arm does not move too fast and the collision is far enough ahead.

14

7 Conclusion

We have developed a mobile manipulation system system for performing au-
tonomous part kitting. We proposed perception software modules which allow
to efficiently detect containers, segment the parts therein, and produce grasps.
In addition, our system is capable of recognizing part variants. The developed
manipulation planner is able to optimize robotic arm trajectories with respect to
collisions, joint limits, end-effector constraints, joint torque, and duration. The
method allows to perform optimization fast and to replan trajectories in case of
possible future collisions due to newly appeared obstacles. We integrated these
modules into a Kuka KMR iiwa robot. Together with the Kuka navigation stack,
our components formed a system capable of autonomous kitting under guidance
of a high-level FSM.

We demonstrated the capabilities of our system in a simplified kitting sce-
nario during the EuRoC Showcase evaluation, in the lab of the challenge host,
supervised by judges under severe time constraints. The experiments shown that
the perception module can reliably detect containers and segment the parts in-
side them. Generated gasps were reliable in the most cases, failing only once
when grasping an Engine Pipe, which was the hardest part in the kit. The tra-
jectory optimization method shown good performance with short runtimes and
allowed to deliver the parts to the kitting compartments in all cases. Real-time
supervision of the workspace and online replanning are a suitable basis for col-
laborative kitting.

Acknowledgements. This research received funding from the European Union’s Sev-

enth Framework Programme grant agreement no. 608849 (EuRoC). It was performed in

collaboration with our end-user partner Peugeot Citroën Automobiles S.A. (PSA). We

also gratefully acknowledge the support of the EuRoC Challenge 2 host: DLR Institute

of Robotics and Mechatronics in Oberpfaffenhofen, Germany.

References

1. Dömel, A., Kriegel, S., Kaßecker, M., Brucker, M., Bodenmüller, T., Suppa, M.:
Toward fully autonomous mobile manipulation for industrial environments. Int.
Journal of Advanced Robotic Systems 14 (2017)

2. Nieuwenhuisen, M., Droeschel, D., Holz, D., Stückler, J., Berner, A., Li, J., Klein,
R., Behnke, S.: Mobile bin picking with an anthropomorphic service robot. In:
IEEE International Conference on Robotics and Automation (ICRA). (2013)

3. Stückler, J., Schwarz, M., Behnke, S.: Mobile manipulation, tool use, and intuitive
interaction for cognitive service robot Cosero. Frontiers in Robotics and AI (2016)

4. Berner, A., Li, J., Holz, D., Stückler, J., Behnke, S., Klein, R.: Combining contour
and shape primitives for object detection and pose estimation of prefabricated
parts. In: IEEE International Conference on Image Processing (ICIP). (2013)

5. Krueger, V., Chazoule, A., Crosby, M., Lasnier, A., Pedersen, M.R., Rovida, F.,
Nalpantidis, L., Petrick, R., Toscano, C., Veiga, G.: A Vertical and Cyber-Physical
Integration of Cognitive Robots in Manufacturing. Proceedings of the IEEE (2016)
1114–1127

15

6. Rovida, F., Crosby, M., Holz, D., Polydoros, A.S., Großmann, B., Petrick, R.P.A.,
Krüger, V.: SkiROS—A Skill-Based Robot Control Platform on Top of ROS. In:
Robot Operating System (ROS): The Complete Reference. (2017) 121–160

7. Pedersen, M.R., Nalpantidis, L., Andersen, R.S., Schou, C., Bøgh, S., Krüger, V.,
Madsen, O.: Robot skills for manufacturing: From concept to industrial deploy-
ment. Robotics and Computer-Integrated Manufacturing (2016) 282–291

8. Holz, D., Topalidou-Kyniazopoulou, A., Stückler, J., Behnke, S.: Real-time ob-
ject detection, localization and verification for fast robotic depalletizing. In: 2015
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). (2015) 1459–1466

9. Crosby, M., Petrick, R., Toscano, C., Dias, R., Rovida, F., Krüger, V.: Integrating
Mission, Logistics, and Task Planning for Skills-Based Robot Control in Industrial
Kitting Applications. Proceedings of the 34th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG) (2017) 135–174

10. Krug, R., Stoyanov, T., Tincani, V., Andreasson, H., Mosberger, R., Fantoni, G.,
Lilienthal, A.J.: The Next Step in Robot Commissioning: Autonomous Picking
and Palletizing. IEEE Robotics and Automation Letters (2016) 546–553

11. Berenson, D., Srinivasa, S., Kuffner, J.: Task space regions: A framework for pose-
constrained manipulation planning. Int. Journal of Robotics Research (IJRR)
(2011) 1435 – 1460

12. Gienger, M., Toussaint, M., Goerick, C.: Task maps in humanoid robot manipula-
tion. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). (2008)

13. Srinivasa, S.S., Johnson, A.M., Lee, G., Koval, M.C., Choudhury, S., King, J.E.,
Dellin, C.M., Harding, M., Butterworth, D.T., Velagapudi, P., Thackston, A.: A
System for Multi-step Mobile Manipulation: Architecture, Algorithms, and Exper-
iments. In: 2016 Int. Symposium on Experimental Robotics. (2017) 254–265

14. Holz, D., Behnke:, S.: Fast edge-based detection and localization of transport boxes
and pallets in RGB-D images for mobile robot bin picking. Int. Symposium on
Robotics (ISR) (2016)

15. Choi, C., Trevor, A.J.B., Christensen, H.I.: RGB-D edge detection and edge-based
registration. In: IEEE/RSJ Int. Conf. on Intel. Robots and Systems (IROS). (2013)

16. Holz, D., Holzer, S., Rusu, R.B., Behnke, S.: Real-Time Plane Segmentation Using
RGB-D Cameras. In: RoboCup 2011: Robot Soccer World Cup XV. (2012) 306–317

17. Holz, D., Ichim, A.E., Tombari, F., Rusu, R.B., Behnke, S.: Registration with the
Point Cloud Library: A modular framework for aligning in 3-D. IEEE Robotics
and Automation Magazine 22 (2015) 110–124

18. Pavlichenko, D., Behnke, S.: Efficient stochastic multicriteria arm trajectory op-
timization. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
(2017)

19. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP:
Stochastic trajectory optimization for motion planning. In: IEEE Int. Conf. on
Robotics and Automation (ICRA). (2011)

	KittingBot: A Mobile Manipulation Robot for Collaborative Kitting in Automotive Logistics

