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Abstract. Image Captioning is a task that requires models to acquire a multi-

modal understanding of the world and to express this understanding in natural 

language text. While the state-of-the-art for this task has rapidly improved in 

terms of n-gram metrics, these models tend to output the same generic captions 

for similar images. In this work, we address this limitation and train a model that 

generates more diverse and specific captions through an unsupervised training 

approach that incorporates a learning signal from an Image Retrieval model. We 

summarize previous results and improve the state-of-the-art on caption diversity 

and novelty. We make our source code publicly available online1. 
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1 Introduction 

Image Captioning is a task that requires models to acquire a multimodal understanding 

of the world and to express this understanding in natural language text, making it rele-

vant to a variety of fields from human-machine interaction to data management. The 

practical goal is to automatically generate a natural language caption that describes the 

most relevant aspects of an image. Most state-of-the-art neural models are built on an 

encoder-decoder architecture where a Convolutional Neural Network (CNN) acts as the 

encoder for the image features that are fed to a Recurrent Neural Network (RNN) which 

generates a caption by acting as a decoder. It is also common to include one or more 

attention layers to focus the captions on the most salient parts of an image. The standard 

way of training is through Maximum Likelihood Estimation (MLE) by using a cross-

entropy loss to replicate ground-truth human-written captions for corresponding im-

ages. Recent Image Captioning models of this kind [1, 11, 12, 28] have shown impres-

sive results, much thanks to the powerful language modelling capabilities of Long 
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Short-Term Memory (LSTM) [15] RNNs. However, although MLE training enables 

models to confidently generate captions that have a high likelihood in the training set, 

it limits their capacity to generate novel descriptions. Their output exhibits a dispropor-

tionate replication of common n-grams and full captions seen in the training set [9, 11, 

26]. 

Contributing to this problem is a combination of biased datasets and insufficient 

quality metrics. While the main benchmarking dataset for Image Captioning, MS 

COCO, makes available over 120k images with 5 human-annotated captions each [6], 

the selection process for the images suggests a lack of diversity in both content and 

composition [11, 20]. Furthermore, the standard benchmarking metrics, based on n-

gram level overlap between generated captions and ground-truth captions, reward mod-

els with a bias towards common n-grams. This leads to the (indirect and unwanted) 

consequence of incentivizing models that output generic captions that are likely to fit a 

range of similar images, despite missing the goal of describing the relevant aspects 

specific to each image. 

In this paper, we propose a model that produces more diverse and specific captions 

by integrating a Natural Language Understanding (NLU) component in our training 

which optimizes the specificity of our Natural Language Generation (NLG) component. 

Our main contribution is an unsupervised specificity-guided training approach that im-

proves the diversity and semantic accuracy of the generated captions. This approach 

can be applied to neural models of any multimodal NLG task (e.g. Image Captioning) 

where a corresponding NLU component can be made available. 

We begin with an analysis of metrics for measuring caption quality in Section 2, 

where we define what we believe to be an informative set of metrics for our target. 

Following this, in Section 3 we describe our novel training approach along with the 

technical details of the NLG (our Image Captioning model) and NLU components for 

our experiments. In Section 4 we outline the experiments we undertook to evaluate our 

approach, followed by a discussion of our quantitative and qualitative results in Section 

5. We review related work in Section 6 before presenting our conclusions and sugges-

tions for future work in Section 7. 

2 Measuring Caption Quality 

The subjectivity in what defines a good caption, has made it difficult to identify a 

single metric for the overall quality of Image Captioning models [5, 26]. Benchmarking 

methods from Machine Translation [3, 19, 23] have been appropriated, while other 

somewhat similar methods such as CIDEr [27] have been proposed specifically for as-

sessing the quality of image captions. All these approaches unfortunately have a strong 

focus on replicating common n-grams from the ground-truth captions [5] and do not 

take into account the richness and diversity of human expression [9, 26]. Moreover, it 

has been found that this class of metrics suffers from poor correlations with human 

evaluation, with CIDEr and METEOR having the highest correlations among them [5]. 

With the recognition of these limitations, there has been a growing interest in devel-

oping metrics that measure other desirable qualities in captions. SPICE [2] is a recent 

addition which measures the overlap of content by comparing automatically generated 

scene-graphs from the ground-truth and generated captions. While being a relevant 
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addition, it does not solve the problem of generic captions. Rare occurrences and more 

detailed descriptions are more likely to incur a penalty than common concepts; e.g. 

correctly specifying a purple flower where the ground-truth text omits its color would 

register a false positive for the color. This, again, encourages the ''safe'' generic captions 

that we want to move away from. 

2.1 Diversity Metrics 

In an effort to measure the amount of generic captions produced by various Image Cap-

tioning models, [11] explores the concept of caption diversity. More recently, this con-

cept has been employed as the focus for training and evaluation [26, 29], and it has been 

proposed that improving caption diversity leads to more human-like captions [26]. This 

research direction is still new and lacks clear benchmarks and standardized metrics. We 

propose the following set of metrics to evaluate the diversity of a model: 

─ novelty - percentage of generated captions where exact duplicates are not found in 

the training set [11, 26, 29] 

─ diversity - percentage of distinct captions (where duplicates count as a single distinct 

caption) out of the total number of generated captions [11] 

─ vocabulary size - number of unique words used in generated captions [26] 

2.2 Meaningful Diversity Through Specificity 

The diversity metrics alone do not tell us if a diverse model is more meaningful or if it 

simply introduced more noise. We argue that improving the specificity of the captions 

is essential to producing a meaningful increase in diversity. Our hypothesis is that by 

directly increasing the specificity, we will also achieve a higher diversity since diversity 

is a necessity for specificity. By improving both the specificity and diversity, we expect 

to generate qualitatively better captions that are less generic. 

For this purpose, we propose a training architecture where a specificity loss is in-

ferred by a separately trained Image Retrieval model. Specificity is measured by two 

standard Image Retrieval metrics: 

─ recall at k - percentage of generated captions resulting in the original image being 

found in the top k candidates retrieved by the Image Retrieval model 

─ mean rank - mean rank given by the Image Retriever to the correct image based on 

its generated caption 

3 Optimizing for Specificity 

To train a model that produces more diverse and meaningful captions, we propose to 

use an Image Retrieval model to improve the caption specificity of an Image Captioning 

model. In Image Retrieval tasks, a given query must be specific enough to retrieve the 

correct image among other, possibly similar, images. In this paper, we investigate 

whether the error signal from an Image Retrieval model can improve caption specificity 
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in an Image Captioning model, and whether these more specific captions are also more 

diverse. 

The training process is inspired by [22] where the task is to generate Referring Ex-

pressions that unambiguously refer to a region of an image; their solution is to introduce 

a Region Discriminator that measures the quality of their generated expressions. Their 

method is in turn inspired by Generative Adversarial Networks (GANs) in which a 

Generator and a Discriminator are in constant competition - the Discriminator aims to 

distinguish between real and generated data, while the Generator aims to generate data 

that the Discriminator cannot tell apart from the real data [13]. In [22], the training is 

cooperative rather than competitive; both systems adjust to the other to provide the best 

joint results. 

We take a slightly different approach from both the joint training in [22] and recent 

applications of GAN training in Image Captioning [9, 26]. Instead of allowing both 

systems to learn from each other, we freeze the NLU side and allow only the NLG to 

learn from the NLU; the NLU model is pre-trained on ground-truth captions, without 

any input from the NLG. Consequently, we avoid one of the problems observed in [22] 

where both systems adapt to each other and develop their own protocol of communica-

tion which gradually degrades the resemblance to human language. We also avoid the 

instability in training and difficulty in loss monitoring commonly seen in GANs. 

3.1 Model Architecture 

To demonstrate our training approach, we practically apply it to a neural Image Cap-

tioning model proposed in [1] which uses an encoder-decoder architecture with region-

based attention. For our experiments, we use a publicly available re-implementation 

[21]. To leverage the fluency gained from MLE training, the model is pre-trained to 

minimize the cross-entropy loss 𝐿𝑋𝐸 for each ground truth sequence 𝑦1:𝑇 when condi-

tioned on an image 𝐼 and the attended image features 𝑖1:𝑇: 

 

 𝐿𝑋𝐸(𝜃) = − ∑ 𝑙𝑜𝑔(𝑝𝜃(𝑦𝑡|𝑦1:𝑡−1, 𝑖𝑡 , 𝐼))𝑇
𝑡=1  . (1) 

 

The pre-trained model also provides a strong baseline to compare to. The model archi-

tecture, illustrated in Fig. 1, consists of a ResNet-101 [14] CNN pre-trained on the 

ImageNet [25] dataset, followed by an LSTM for attention modelling, and a second 

LSTM that generates the captions. (Unlike [1], the attention-regions are 14x14 regions 

over the final convolutional layer instead of using a region proposal network.) During 

our specificity training, the CNN layers remain frozen while we update the weights of 

the two LSTMs. 
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Fig. 1. Our Image Captioning model  

architecture. 

 

 

 

 

 

 

Fig. 2. Interactions between the Image  

Captioning and Image Retrieval models during 

training.

For our NLU component, we use the neural Image Retrieval model from the Sent-

Eval toolkit [8]; the NLU is pre-trained on ground-truth data and remains frozen during 

our specificity training. Given an image-caption pair, it produces the loss and gradients 

for our Image Captioning model by projecting the image and caption into the same 

space to estimate their similarity. The image embeddings are acquired by a ResNet-101 

trained on ImageNet, and the captions are embedded using InferSent [7] with GloVe 

[24] word embeddings. 

3.2 Specificity Loss Functions 

We define four different loss functions to be calculated by our NLU component, each 

used in one of the model variations. The first two improve the individual similarity of 

a caption to its corresponding image, while the latter two implement contrastive pair-

wise versions of the first two. 

Let 𝑐 be the projected caption embedding and let 𝑖 be the projected image embed-

ding, both acquired by passing the generated caption 𝐶 and its original corresponding 

image 𝐼𝑜 through the Image Retrieval model. For the contrastive loss functions, let 𝐼𝑐 
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be a contrastive image chosen at random from the top 1% most similar images to 𝐼𝑜 

based on its activations from the final convolutional layer of the encoder CNN. We can 

now define the dot product similarity loss 𝐿𝐷𝑃, the cosine similarity loss 𝐿𝐶𝑜𝑠, the con-

trastive dot product loss 𝐿𝐶𝐷𝑃 and the contrastive cosine loss 𝐿𝐶𝐶𝑜𝑠. Equations 2 - 5 

define the loss functions in terms of a single example; the final loss is the mean loss 

over all examples. 

 

𝐿𝐷𝑃(𝐶, 𝐼𝑜) = −(𝑐 ⋅ 𝑖) ,  (2) 

𝐿𝐶𝑜𝑠(𝐶, 𝐼𝑜) = −
𝑐 ⋅ 𝑖

∣∣𝑐∣∣ ⋅ ∣∣𝑖∣∣
 , (3) 

𝐿𝐶𝐷𝑃(𝐶, 𝐼𝑜 , 𝐼𝑐) = 𝑚𝑎𝑥(0, 𝑐 ⋅ 𝑖𝑐 − 𝑐 ⋅ 𝑖𝑜) , (4) 

𝐿𝐶𝐶𝑜𝑠(𝐶, 𝐼𝑜 , 𝐼𝑐) = 𝑚𝑎𝑥 (0,
𝑐 ⋅ 𝑖𝑐

∣∣𝑐∣∣ ⋅ ∣∣𝑖𝑐∣∣
−

𝑐 ⋅ 𝑖𝑜

∣∣𝑐∣∣ ⋅ ∣∣𝑖𝑜∣∣
) .  (5) 

3.3 Training 

The interactions between the NLU and NLG components are illustrated in Fig. 2. At 

each iteration, the Image Captioning model generates a full caption for a given image 

(or a set of captions for a batch of images). This involves a non-differentiable sampling 

step to convert the word-level probabilities into a sequence of discrete words repre-

sented by 1-hot encoded vectors. The caption is then fed to the Image Retriever along 

with its corresponding image, where both are passed through the embedding and pro-

jection steps. 

The Image Retriever calculates one of the specificity losses defined in Section 3.2. 

To minimize this loss, we need to backpropagate the gradients through the Image Re-

trieval model's (frozen) layers and then back through the Image Captioning model's 

layers that we wish to update. This is not trivial since our forward pass includes a non-

differentiable sampling step. To overcome this, we apply the Straight-Through method 

[4] and use the gradients with respect to the 1-hot encoding as an approximation for the 

gradients with respect to the probabilities before sampling. We empirically validate this 

approach by observing that our loss decreases smoothly. We also experimented with 

the similar Gumbel Straight-Through method [16] but observed no empirical benefit. 

4 Experiment Design 

All experiments are conducted in PyTorch2. Our implementation extends the code of 

the baseline Image Captioning model by replacing the MLE training with our specific-

ity training. The Image Retrieval code is modified to calculate our specificity losses 

defined in Section 3.2. We use the Adam [18] optimizer with an initial learning rate of 

1 × 10−6 for the contrastive models and 1 × 10−7 for the other two models. Early stop-

ping is used based on the lowest mean rank on the validation set. The contrastive models 

trained for about 190k iterations on the randomly shuffled training set, while the non-

                                                           
2  https://pytorch.org/ 

https://pytorch.org/
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contrastive models trained for about 250k iterations, all using a batch-size of 2. When 

sampling from the final models on the test set, any tokens that are duplicates of the 

immediately previous token are automatically removed since such duplicates were an 

issue in our non-contrastive models; we do the same for all our models, including the 

baseline, for a fair comparison. 

4.1 Dataset 

We use the MS COCO dataset [20] with the Karpathy 5k splits [17], containing 113k 

images for training and 5k each for validation and test, with 5 captions for each image. 

The same splits were used for both the NLG and the NLU, including pre-training, en-

suring that we have no overlap between training, validation and test data and that our 

improvements do not come from bridging a gap between different datasets. Note that 

the specificity training does not require any extra data in addition to that used during 

pre-training. Furthermore, since the labels are not used during our specificity training, 

one could also make use of unlabeled data. All splits were pre-processed by lower-

casing all words and removing punctuation. Any words appearing less than 5 times in 

the training set were replaced by the UNK token, resulting in a vocabulary size of 9487 

(including the UNK token). 

Table 1. Diversity and Specificity. Our models are named after the loss functions defined in 3.2. 

All metrics are percentages except Vocab Size and Mean Rank which are absolute numbers. 

Higher is better except for Mean Rank where lower is better. Results for a as reported in [11]. 

Diversity and Specificity 

 Diversity Novelty Vocab 

Size 

R@1 R@5 R@10 Mean 

Rank 

D-ME+DMSM [12]a 47.0a 70.0a -     

Adv-samp [26] - 73.9 1616     

DP (Ours) 79.12 76.66 1029 10.38 31.38 44.48 33.70 

Cos (Ours) 79.16 76.66 1034 10.04 30.66 43.54 35.25 

CDP (Ours) 84.48 77.49 1064 12.80 36.16 49.67 32.79 

CCos (Ours) 84.37 77.29 1052 12.53 36.19 50.00 32.30 

Baseline  76.26 69.08   812 10.82 30.42 43.32 39.25 

5 Results and Discussion 

The models we compare to are the best models in terms of diversity from [11, 26], using 

the single best caption after re-ranking for the latter. We also report the specificity met-

rics used for our training goals. The results for specificity would not be directly com-

parable to models using other external systems, but they are relevant when assessing 

our own models and verifying that our increase in diversity follows from an increase in 

specificity. Results from our contrastive models are averaged over 3 runs each. The 

non-contrastive models are based on single runs. 

As can be seen in Table 1, our models demonstrate increased diversity and novelty, 

outperforming previously reported results. The vocabulary size also increases but is 
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lower than in [26]. When it comes to the specificity metrics, our contrastive models 

have the advantage over our non-contrastive ones. They all improve the overall mean 

rank, but the latter do not show the increase in smaller k recalls that the contrastive 

models do. This is not surprising since the contrastive models specifically minimize 

their loss in comparison to similar images, while the non-contrastive ones increase their 

semantic similarity in isolation. The higher specificity of the contrastive models is also 

accompanied by higher values in diversity and novelty. 

Table 2. Novelty and diversity per image with up to 10 candidates; novelty and diversity was not 

reported for the single-best-caption output. 

Diversity metrics for multi-candidate models 

 Diversity 

within candidates 

Novelty 

within candidates 

CVAE [29] 11.8 82.0 

GMM-CVAE [29] 59.4 80.9 

AG-CVAE [29] 76.4 79.5 

 

For completeness, we include the best models from [29] in Table 2; however, they only 

report diversity results on multiple (up to 10) candidates per image (where duplicates 

of a novel caption are counted as multiple novel captions), so they are not directly com-

parable to the single-best-caption models. Note that [12, 29] use different data splits, 

while our models and [26] use the Karpathy 5k splits [17]. 

Table 3. Standard text metric results for single-best-caption models. All metrics are n-gram based 

except for SPICE which is based on scene graphs automatically inferred from the captions. 

Standard text metrics 

B-n = BLEU-n     R-L = ROUGE-L     M = METEOR     C = CIDEr     S = SPICE 

 B-1  B-2 B-3 B-4 R-L M C S 

D-ME+DMSM [12] - - - 0.257 - 0.236 - - 

Adv-samp [26] - - - - - 0.236 - 0.166 

CVAE [29] 0.698 0.521 0.372 0.265 0.506 0.225 0.834 0.158 

GMM-CVAE [29] 0.718 0.538 0.388 0.278 0.516 0.238 0.932 0.170 

AG-CVAE [29] 0.716 0.537 0.391 0.286 0.517 0.239 0.953 0.172 

DP (Ours) 0.725 0.556 0.409 0.297 0.527 0.247 0.953 0.184 

Cos (Ours) 0.725 0.556 0.409 0.297 0.527 0.247 0.953 0.184 

CDP (Ours) 0.736 0.564 0.417 0.306 0.533 0.251 0.977 0.188 

CCos (Ours) 0.737 0.565 0.419 0.307 0.533 0.253 0.980 0.188 

Baseline  0.746 0.579 0.432 0.320 0.545 0.262 1.036 0.197 

 

In Table 3, we report results on the standard text metrics. As expected, we see a slight 

decrease in these metrics when moving away from safer generic captions. They are, 

however, still in line with our state-of-the-art baseline and slightly stronger than previ-

ous diversity-focused models. 
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5.1 Qualitative Analysis 

Our contrastive models tend to generate more specific (and accurate) captions while the 

baseline model prefers common patterns from the training data, as can be seen in the 

leftmost images in Fig. 3. As is particularly evident in the bottom image, our contrastive 

models pay more attention to the image content (i.e. mentioning the dog) while the 

baseline model pays more attention to the language priors (i.e. assuming the presence 

of a surfboard on the beach). The rightmost image shows a failure case where our con-

trastive models focus on the wooden structure (which is more unique in this context) 

while omitting the skateboard (which is more common, but also more relevant). 

The improvement in diversity and specificity is not achieved by simply producing 

longer captions; the average caption length for the baseline, contrastive and non-con-

trastive models were 9.6, 9.4 and 8.9 words respectively. 

 

Fig. 3. Examples of generated captions and human annotations. The rightmost image shows a 

failure case where specificity took precedence over relevance. 

6 Related Work 

While Image Captioning has received a lot of attention, the focus has mainly been on 

n-gram metric results. [11] provides some insight into the problems that follow from 

the standard training and metrics, noting the lack of diversity observed in captions from 

state-of-the-art neural models. More recently, this has led to some initial attempts at 

improving caption diversity. 

In [9], a GAN model conditioned on the image is proposed. The authors do not report 

any quantitative results for diversity, but they show qualitative examples after manually 

adjusting the variance of the input to the GAN. This demonstrates the ability of LSTMs 

to produce fluent captions under noisy conditions, leading to some variation in the out-

put. We observed a similar effect in experiments with noise-based gradients. However, 

such methods are not constrained to produce meaningful diversity (as discussed in Sec-

tion 3) and the level of noise that is appropriate for one caption might be too high for 

another. 

GENERATED CAPTIONS

  baseline: a man riding a snowboard down a snow covered slope

  DP: a snowboarder doing a trick in the air

  Cos: a snowboarder doing a trick in the air

  CDP: a snowboarder is jumping in the air on a snowboard

  CCos: a snowboarder is jumping in the air on a snowboard

HUMAN CAPTIONS

  a picture of a man in the air on a snowboard

  a man doing tricks on a snowboard

  a man riding a snowboard through the air on a ski slope

  a snowboarder flies into the air under a chair lift

  a snowboarder does a trick while jumping through the air

GENERATED CAPTIONS

  baseline: a man walking on the beach with a surfboard

  DP: a person walking on the beach with a surfboard

  Cos: a person walking on a beach with a surfboard

  CDP: a person walking on a beach with a dog

  CCos: a man walking on the beach with a dog

HUMAN CAPTIONS

  a person walking their dog on the beach

  a man on a beach holding something while walking along it

  a single person walking the beach with a dog

  a person walking their dog on the beach

  a person walking their dog along the shoreline

GENERATED CAPTIONS

  baseline: a man is doing a trick on a skateboard

  DP: a man doing a trick on a skateboard

  Cos: a man doing a trick on a skateboard

  CDP: a man is doing a trick on a wooden structure

  CCos: a man is doing a trick on a wooden structure

HUMAN CAPTIONS

  a man on a skateboard performing a trick

  a man flying through the air on top of a skateboard

  a person on a skateboard in the air at a skate park

  a male skateboarder skateboards on a wall in an enclosed area

  a male on a skateboard performing a trick on a halfpipe
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Another example of GAN training is [26] where the Discriminator classifies whether 

a multi-sample set of captions are human-written or generated. In contrast, our evalua-

tor only requires a single caption and uses a much simpler loss function. Furthermore, 

we let the NLU remain frozen during training, making the training stable and producing 

more informative learning curves. 

A similar approach can be found in [10] where Contrastive Learning is used in a 

GAN-like setting. In contrast to our approach which is unsupervised after pre-training, 

theirs require image-caption pairs both during and after pre-training. Similar to our 

work, they are motivated by a specificity goal; unfortunately, they do not report results 

on any diversity metrics. 

7 Conclusion 

With this work, we have highlighted an important limitation in current Image Caption-

ing research. We provided a discussion on the limitations of current evaluation metrics 

and proposed a set of metrics related to diversity while emphasizing the importance of 

meaningful diversity. Our work summarizes previously reported results and contributes 

a new state-of-the-art in this area in terms of diversity and novelty. The code for our 

model and training approach is made publicly available online to encourage further 

research. 

To conclude, we believe that the standard MLE training has both benefits and draw-

backs for Image Captioning and that much can be gained by combining it with addi-

tional optimization terms. By including an Image Retrieval learning signal, we intro-

duced an additional dimension to our model's training by including text-to-image un-

derstanding in addition to its original image-to-text target. 

We suggest further research into training approaches that incentivizes multimodal 

models to build a more complete, bi-directional understanding of its modalities. Addi-

tionally, we encourage further exploration of evaluation methods that assess additional 

desirable qualities in automatically generated captions. 
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