Skip to main content

Very Small Spiking Neural Networks Evolved for Temporal Pattern Recognition and Robust to Perturbed Neuronal Parameters

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11139))

Included in the following conference series:

Abstract

We evolve both topology and synaptic weights of recurrent very small spiking neural networks in the presence of noise on the membrane potential. The noise is at a level similar to the level observed in biological neurons. The task of the networks is to recognise three signals in a particular order (a pattern ABC) in a continuous input stream in which each signal occurs with the same probability. The networks consist of adaptive exponential integrate and fire neurons and are limited to either three or four interneurons and one output neuron, with recurrent and self-connections allowed only for interneurons. Our results show that spiking neural networks evolved in the presence of noise are robust to the change of neuronal parameters. We propose a procedure to approximate the range, specific for every neuronal parameter, from which the parameters can be sampled to preserve, at least for some networks, high true positive rate and low false discovery rate. After assigning the state of neurons to states of the network corresponding to states in a finite state transducer, we show that this simple but not trivial computational task of temporal pattern recognition can be accomplished in a variety of ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahissar, E., Arieli, A.: Figuring space by time. Neuron 32, 185–201 (2001)

    Article  Google Scholar 

  2. Anderson, J.S., Lampl, I., Gillespie, D.C., Ferster, D.: The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science 290, 1968–1972 (2000)

    Article  Google Scholar 

  3. Bialek, W., Rieke, F., de Ruyter van Steveninck, R.R., Warland, D., et al.: Reading a neural code. In: Neural Information Processing Systems, pp. 36–43 (1989)

    Google Scholar 

  4. Burnstock, G.: Autonomic neurotransmission: 60 years since sir henry dale. Ann. Rev. Pharmacol. Toxicol. 49, 1–30 (2009)

    Article  Google Scholar 

  5. Buzsáki, G., Chrobak, J.J.: Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr. Opin. Neurobiol. 5, 504–510 (1995)

    Article  Google Scholar 

  6. Decharms, R.C., Zador, A.: Neural representation and the cortical code. Ann. Rev. Neurosci. 23, 613–647 (2000)

    Article  Google Scholar 

  7. Destexhe, A., Rudolph, M., Fellous, J.M., Sejnowski, T.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107, 13–24 (2001)

    Article  Google Scholar 

  8. Destexhe, A., Paré, D.: Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol. 81, 1531–1547 (1999)

    Article  Google Scholar 

  9. Faisal, A.A., Selen, L.P., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  10. Finn, I.M., Priebe, N.J., Ferster, D.: The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007)

    Article  Google Scholar 

  11. Florian, R.V.: Biologically inspired neural networks for the control of embodied agents. Center for Cognitive and Neural Studies (Cluj-Napoca, Romania), Technical report Coneural-03-03 (2003)

    Google Scholar 

  12. Gerstner, W., Kempter, R., van Hemmen, J.L., Wagner, H.: A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996)

    Article  Google Scholar 

  13. Huxter, J., Burgess, N., O’keefe, J.: Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828–832 (2003)

    Article  Google Scholar 

  14. Jacobson, G., et al.: Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145–160 (2005)

    Article  Google Scholar 

  15. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, 489–496 (1996)

    Article  Google Scholar 

  16. Marder, E.: Variability, compensation, and modulation in neurons and circuits. Proc. Natl. Acad. Sci. USA 108(Suppl. 3), 15542–15548 (2011)

    Article  Google Scholar 

  17. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347 (2008)

    Article  MathSciNet  Google Scholar 

  18. Paré, D., Shink, E., Gaudreau, H., Destexhe, A., Lang, E.J.: Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J. Neurophysiol. 79, 1450–1460 (1998)

    Article  Google Scholar 

  19. Prinz, A.A., Bucher, D., Marder, E.: Similar network activity from disparate circuit parameters. Nat. Neurosci. 7, 1345–1352 (2004)

    Article  Google Scholar 

  20. Stacey, W., Durand, D.: Stochastic resonance improves signal detection in hippocampal neurons. J. Neurophysiol. 83, 1394–402 (2000)

    Article  Google Scholar 

  21. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and squids. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  22. Wróbel, B., Abdelmotaleb, A., Joachimczak, M.: Evolving networks processing signals with a mixed paradigm, inspired by gene regulatory networks and spiking neurons. In: Di Caro, G.A., Theraulaz, G. (eds.) BIONETICS 2012. LNICST, vol. 134, pp. 135–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06944-9_10

    Chapter  Google Scholar 

  23. Yaqoob, M., Wróbel, B.: Robust very small spiking neural networks evolved with noise to recognize temporal patterns. In: ALIFE 2018: Proceedings of the 2018 Conference on Artificial Life, pp. 665–672. MIT Press (2018)

    Google Scholar 

  24. Yaqoob, M., Wróbel, B.: Very small spiking neural networks evolved to recognize a pattern in a continuous input stream. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 3496–3503. IEEE (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Polish National Science Center (project EvoSN, UMO-2013/08/M/ST6/00922). MY acknowledges the support of the KNOW RNA Research Center in Poznan (No. 01/KNOW2/2014). We are grateful to Volker Steuber and Neil Davey for discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Borys Wróbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yaqoob, M., Wróbel, B. (2018). Very Small Spiking Neural Networks Evolved for Temporal Pattern Recognition and Robust to Perturbed Neuronal Parameters. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11139. Springer, Cham. https://doi.org/10.1007/978-3-030-01418-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01418-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01417-9

  • Online ISBN: 978-3-030-01418-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics