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Abstract

Traditionally, multi-layer neural networks use

dot product between the output vector of pre-

vious layer and the incoming weight vector as

the input to activation function. The result of

dot product is unbounded, thus increases the risk

of large variance. Large variance of neuron

makes the model sensitive to the change of in-

put distribution, thus results in poor generaliza-

tion, and aggravates the internal covariate shift

which slows down the training. To bound dot

product and decrease the variance, we propose to

use cosine similarity or centered cosine similar-

ity (Pearson Correlation Coefficient) instead of

dot product in neural networks, which we call co-

sine normalization. We compare cosine normal-

ization with batch, weight and layer normaliza-

tion in fully-connected neural networks as well

as convolutional networks on the data sets of

MNIST, 20NEWS GROUP, CIFAR-10/100 and

SVHN. Experiments show that cosine normaliza-

tion achieves better performance than other nor-

malization techniques.

Deep neural networks have received great success in

recent years in many areas, e.g. image recognition

(Krizhevsky et al., 2012), speech processing (Hinton et al.,

2012), natural language processing (Mikolov et al., 2013),

Go game (Silver et al., 2016). Training deep neural net-

works is nontrivial task. Gradient descent is commonly

used to train neural networks. However, due to gradient

vanishing problem (Hochreiter et al., 2001), it works badly

when directly applying to deep networks.

Lots of approaches have been adopted to overcome

the difficulty of training deep networks. For example,
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pre-training (Hinton et al., 2006; Hinton & Salakhutdinov,

2006), special network structure (Simonyan & Zisserman,

2014; Szegedy et al., 2015; He et al., 2016), ReLU activa-

tion (Nair & Hinton, 2010; Maas et al., 2013), noise inject-

ing (Wan et al., 2013; Srivastava et al., 2014), normaliza-

tion (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016;

Ba et al., 2016; Arpit et al., 2016; Ren et al., 2016).

In previous work, multi-layer neural networks use dot prod-

uct (also called inner product) between the output vector of

previous layer and the incoming weight vector as the input

to activation function.

net = ~w · ~x (1)

where net is the input to activation function (pre-

activation), ~w is the incoming weight vector, and ~x is the in-

put vector which is also the output vector of previous layer,

(·) indicates dot product. Equation 1 can be rewritten as

Equation 2, where cos θ is the cosine of angle between ~w
and ~x, | | is the Euclidean norm of vector.

net = |~w| |~x| cos θ (2)

The result of dot product is unbounded, thus increases

the risk of large variance. Large variance of neuron

makes the model sensitive to the change of input distri-

bution, thus results in poor generalization. Large vari-

ance could also aggravate the internal covariate shift which

slows down the training (Ioffe & Szegedy, 2015). Using

small weights can alleviate this problem. Weight decay

(L2-norm) (Krogh & Hertz, 1991) and max normalization

(max-norm) (Srebro & Shraibman, 2005; Srivastava et al.,

2014) are methods that could decrease the weights. Batch

normalization (Ioffe & Szegedy, 2015) uses statistics cal-

culated from mini-batch training examples to normalize the

result of dot product, while layer normalization (Ba et al.,

2016) uses statistics from the same layer on a single train-

ing case. The variance can be constrained within certain

range using batch or layer normalization. Weight normal-

ization (Salimans & Kingma, 2016) re-parameterizes the

weight vector by dividing its norm, thus partially bounds

the result of dot product.

To thoroughly bound dot product, a straight-forward idea

is to use cosine similarity. Similarity (or distance) based

http://arxiv.org/abs/1702.05870v5
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methods are widely used in data mining and machine learn-

ing (Tan et al., 2006). Particularly, cosine similarity is most

commonly used in high dimensional spaces. For example,

in information retrieval and text mining, cosine similarity

gives a useful measure of how similar two documents are

(Singhal, 2001).

In this paper, we combine cosine similarity with neural net-

works. We use cosine similarity instead of dot product

when computing the pre-activation. That can be seen as

a normalization procedure, which we call cosine normal-

ization. Equation 3 shows the cosine normalization.

netnorm = cos θ =
~w · ~x

|~w| |~x|
(3)

To extend, we can use the centered cosine similarity, Pear-

son Correlation Coefficient (PCC), instead of dot product.

By ignoring the magnitude of ~w and ~x, the input to activa-

tion function is bounded between -1 and 1. Higher learning

rate could be used for training without the risk of large vari-

ance. Moreover, network with cosine normalization can be

trained by both batch gradient descent and stochastic gra-

dient descent, since it does not depend on any statistics on

batch or mini-batch examples.

We compare our cosine normalization with batch, weight

and layer normalization in fully-connected neural networks

on the MNIST and 20NEWS GROUP data sets. Addition-

ally, convolutional networks with different normalization

techniques are evaluated on the CIFAR-10/100 and SVHN

data sets. Here is a brief summary:

• Cosine normalization achieves lower test error than

batch, weight and layer normalization

• Centered cosine normalization ( Pearson Correlation

Coefficient ) further reduces the test error.

• Cosine normalization is more stable than other nor-

malization techniques, specially batch normalization.

• Cosine normalization can accelerate neural networks

training as well as other normalization.

1. Background and Motivation

Large variance of neuron in neural network makes the

model sensitive to the change of input distribution, thus re-

sults in poor generalization. Moreover, variance could be

amplified as information moves forward along layers, espe-

cially in deep network. Large variance could also aggravate

the internal covariate shift, which refers the change of dis-

tribution of each layer during training, as the parameters of

previous layers change (Ioffe & Szegedy, 2015). Internal

covariate shift slows down the training because the layers

need to continuously adapt to the new distribution. Tradi-

tionally, neural networks use dot product to compute the

pre-activation of neuron. The result of dot product is un-

bounded. That is to say, the result could be any value in the

whole real space, thus increases the risk of large variance.

Using small weights can alleviate this problem, since

the pre-activation net in Equation 2 will be decreased

when |~w| is small. Weight decay (Krogh & Hertz,

1991) and max normalization (Srebro & Shraibman, 2005;

Srivastava et al., 2014) are methods that try to make the

weights to be small. Weight decay adds an extra term to

the cost function that penalizes the squared value of each

weight separately. Max normalization puts a constraint on

the maximum squared length of the incoming weight vec-

tor of each neuron. If update violates this constraint, max

normalization scales down the vector of incoming weights

to the allowed length. The objective (or direction to objec-

tive) of original optimization problem is changed when us-

ing weight decay (or max normalization). Moreover, they

bring additional hyper parameters that should be carefully

preset.

Batch normalization (Ioffe & Szegedy, 2015) uses statis-

tics calculated from mini-batch training examples to nor-

malize the pre-activation. The normalized value is re-

scaled and re-shifted using additional parameters. Since

batch normalization uses the statistics on mini-batch exam-

ples, its effect is dependent on the mini-batch size. To over-

come this problem, normalization propagation (Arpit et al.,

2016) uses a data-independent parametric estimate of

mean and standard deviation, while layer normalization

(Ba et al., 2016) computes the mean and standard deviation

from the same layer on a single training case. Weight nor-

malization (Salimans & Kingma, 2016) re-parameterizes

the incoming weight vector by dividing its norm. It de-

couples the length of weight vector from its direction, thus

partially bounds the result of dot product. But it does not

consider the length of input vector. These methods all bring

additional parameters to be learned, thus make the model

more complex.

An important source of inspiration for our work is cosine

similarity, which is widely used in data mining and ma-

chine learning (Singhal, 2001; Tan et al., 2006). To thor-

oughly bound dot product, a straight-forward idea is to use

cosine similarity. We combine cosine similarity with neu-

ral network, and the details will be described in the next

section.

2. Cosine Normalization

To decrease the variance of neuron, we propose a new

method, called cosine normalization, which simply uses

cosine similarity instead of dot product in neural network.
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A simple multi-layer neural network is shown in Figure 1.

Using cosine normalization, the output of hidden unit is

computed by Equation 4.

o = f(netnorm) = f(cos θ) = f(
~w · ~x

|~w| |~x|
) (4)

where netnorm is the normalized pre-activation, ~w is the

incoming weight vector and ~x is the input vector, (·) indi-

cates dot product, f is nonlinear activation function. Co-

sine normalization bounds the pre-activation between -1

and 1. The result could be even smaller when the dimen-

sion is high. As a result, the variance can be controlled

within a very narrow range.

w

x

Figure 1. A simple neural network. The output of hidden unit is

the nonlinear transform of dot product between input vector and

incoming weight vector. That is computed by f(~w · ~x). With

cosine normalization, The output of hidden unit is computed by

f( ~w·~x
|~w||~x|

)

Empirically, we find that using ReLU activation function

max(0, netnorm), the result of normalization needs no re-

scaling and re-shifting. Therefore, there is no additional

parameter to be learned or hyper-parameter to be preset.

However, when using other activation functions , like sig-

moid, tanh, or softmax, the result of normalization should

be re-valued to fully utilize the non-linear regime of the

functions.

When implementing of cosine normalization in fully-

connected nets, we just need divide the norm of incoming

weight vector, as well as the norm of input vector. The in-

put vector is the output vector of previous layer. That is to

say, the hidden units in the same layer have the same norm

of input vector. While in the convolutional nets, the input

vector is constrained in a receptive field. Different recep-

tive fields have different norms.

One thing should be noticed is that cosine similarity can

only measure the similarity between two non-zero vec-

tors, since denominator can not be zero. Non-zero bias

can be added to avoid the situation of zero vector. Let

~w = [w1, w2...wi] and ~x = [x1, x2...xi]. After adding bias,

~w = [w0, w1, w2...wi] and ~x = [x0, x1, x2...xi], where w0

and x0 should be non-zero.

We can use gradient descent (back propagation) to train the

neural network with cosine normalization. Comparing to

batch normalization, cosine normalization does not depend

on any statistics on batch or mini-batch examples, so the

model can be trained by both batch gradient descent and

stochastic gradient descent. Meanwhile, cosine normaliza-

tion performs the same computation in forward propaga-

tion at training and inference times. The procedure of back

propagation in neural network with cosine normalization is

the same as ordinary neural network except the derivative

of netnorm with respect to w or x.

To show the derivative conveniently, dot product can be

rewritten as Equation 5, where wi indicates the i dimen-

sion of vector ~w, and xi indicates the i dimension of vector

~x.

net =
∑

i

(wixi) (5)

Therefore, the derivative of net with respect to wi or xi in

ordinary neural network can be calculated by Equation 6 or

Equation 7.

∂net

∂wi

= xi (6)

∂net

∂xi

= wi (7)

Correspondingly, the cosine normalization can be rewritten

as Equation 8.

netnorm = cos θ =

∑

i
(wixi)

√
∑

i
(w2

i
)
√
∑

i
(x2

i
)

(8)

Then, the derivative of netnorm with respect to wi or xi

can be calculated by Equation 9 or Equation 10.

∂netnorm
∂wi

=
xi

√

∑

i
(w2

i
)
√

∑

i
(x2

i
)
−

wi

∑

i
(wixi)

(
√
∑

i
(w2

i
))3
√
∑

i
(x2

i
)

(9)

∂netnorm
∂xi

=
wi

√

∑

i
(w2

i
)
√

∑

i
(x2

i
)
−

xi

∑

i
(wixi)

√

∑

i
(w2

i
)(
√

∑

i
(x2

i
))3

(10)

Equation 9 or Equation 10 can be briefly written as Equa-

tion 11 or Equation 12.

∂netnorm
∂wi

=
xi

|~w| |~x|
−

wi(~w · ~x)

|~w|
3
|~x|

(11)

∂netnorm
∂xi

=
wi

|~w| |~x|
−

xi(~w · ~x)

|~w| |~x|
3

(12)
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As pointed in (LeCun et al., 2012), centering the inputs

of units can help the training of neural networks. Batch

or layer normalization centers the data by subtracting the

mean of batch or layer, while mean-only batch normaliza-

tion can enhance the performance of weight normalization

(Salimans & Kingma, 2016). We can use Pearson Correla-

tion Coefficient (PCC), which is centered cosine similarity,

to extend cosine normalization:

netnorm =
(~w − µw) · (~x − µx)

|~w − µw| |~x− µx|
(13)

where µw is the mean of ~w and µx is the mean of ~x.

3. Discussions

3.1. Comparing to weight normalization

Weight normalization (Salimans & Kingma, 2016) re-

parameterizes the weights by using new parameters as:

~wnew =
g

|~w|
~w (14)

Then, the output of hidden unit is computed as:

o = f(netnorm) = f(~wnew · ~x) = f

(

g

|~w|
~w · ~x

)

(15)

where g is a re-scaling parameter and can be learned by gra-

dient descent. Ignoring the re-scaling parameter g, weight

normalization could be seen as partial cosine normaliza-

tion which only constrains the weights. By additionally

dividing the magnitude of ~x, cosine normalization bounds

pre-activation within a narrower range, thus makes lower

variance of neurons.

Moreover, cosine normalization makes the model more ro-

bust for different input magnitude. For example, in the for-

ward procedure of the fully-connected network, we have

~xl+1 = f(~w · ~xl). If we scale the ~xl by a factor λ, then

~xl+1 = f(~w · (λ~xl)). When the activation function f is

ReLU, we have ~xl+1 = λf(~w · ~xl). So the λ is linearly

transmitted to the last layer. When the last layer is soft-

max, exp(~x)/
∑

exp(~x), the output distribution becomes

more steep due to the nonlinearity of softmax. For exam-

ple, if the input vector to softmax is [1, 2], then the output

distribution is [0.2689, 0.7311]. When the λ = 10, after

the linearly transmitting, the input vector to softmax be-

comes [10, 20], and the output distribution becomes [0, 1].

Supposing we want to recognize a handwritten digit, scal-

ing the whole digit by a factor does not bring any valid

information. In other words, the output distribution should

not be changed. By using cosine normalization, the output

distribution can be stable when the input magnitude varies,

and it depends only on the angle between the input and the

weight.

In the backward procedure of weight normalization, the

derivative of netnorm with respect to wi or xi can be cal-

culated by Equation 16 or Equation 17.

∂netnorm
∂wi

=
xi

|~w|
−

wi(~w · ~x)

|~w|3
(16)

∂netnorm
∂xi

=
wi

|~w|
(17)

After scaling the input by λ, the derivative of netnorm with

respect to wi becomes Equation 18. Comparing Equation

16 with Equation 18, we can see that the scaling of input

also makes the gradient scaling in weight normalization.

While in cosine normalization, as shown in Equation 11,

the scaling factor λ can be offset by the |λ~x| in the denom-

inator.

∂netnorm
∂wi

=
λxi

|~w|
−

wi(~w · λ~x)

|~w|
3

= λ

(

xi

|~w|
−

wi(~w · ~x)

|~w|
3

)

(18)

3.2. Comparing to layer normalization

Layer normalization (Ba et al., 2016) use Equation 19 to

normalize pre-activation, followed by re-scaling and re-

shifting the normalized value (Equation 20).

netnorm ==
net− µ

σ
=

~w · ~x− µ

σ
(19)

o = f(γ netnorm + β) (20)

The mean µ and standard deviation σ are computed over a

layer on a single training case. The γ is re-scaling parame-

ter and β is re-shifting parameter, which are learned during

training.

Because |~x− µx| =
√
∑

i
(xi − µx)2, and σx =

√

1

n

∑

i
(xi − µx)2, where n is a constant referring to the

dimension of ~x, The centered cosine normalization ( Pear-

son Correlation Coefficient ) can be re-write as:

netnorm =
(~w − µw) · (~x − µx)

nσwσx

(21)

Ignoring the constraining of weights, layer normalization is

similar with Pearson Correlation Coefficient by constrain-

ing the ~x in fully-connected networks.

However, there are three differences between Pearson Cor-

relation Coefficient and layer normalization: 1) Pearson

Correlation Coefficient constrains ~w as well as ~x, while

layer normalization constrains only ~x. Thus Pearson Corre-

lation Coefficient is robust to the scaling or shifting of both
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weight and input. 2) Layer normalization computes the

mean and standard deviation before activation and after dot

product, while Pearson Correlation Coefficient computes

the mean and standard deviation before dot product and af-

ter activation. 3) In convolutional networks, Pearson Cor-

relation Coefficient calculates the mean and standard devi-

ation from the receptive fields, while layer normalization

calculates the mean and standard deviation from the whole

layer. That is to say, different receptive fields have differ-

ent mean and standard deviation using Pearson Correlation

Coefficient, while the same layer has the same mean and

standard deviation using layer normalization. As pointed

in (Ba et al., 2016), layer normalization works well when

all the hidden units in a layer make similar contributions,

while the assumption of similar contributions is no longer

true for convolutional networks. Pearson Correlation Co-

efficient just needs the assumption of similar contributions

in the receptive fields rather than the whole layer. That is

more reasonable for the convolutional networks.

3.3. Similarity metric in neural networks

In machine learning and data mining, there are lots of met-

rics to measure the similarity or distance between different

samples. Among them, cosine similar or the centered co-

sine (Pearson Correlation Coefficient), is heavily used in

many fields, e.g. K-nearest neighbors for classification,

K-means for clustering, information retrieval, item or user

based recommendation. There are also some neural net-

works using similarity metrics as the output of neurons, e.g.

Radial Basis Function networks (RBF) (Moody & Darken,

1989), Self-Organizing Map (SOM) (Kohonen, 1982). The

training of these networks is not using back propagation,

and it is hard to build end-to-end deep networks using RBF

or SOM. The paper (Lin et al., 2013) argues that the level

of abstraction is low with dot product (generalized linear

model), thus uses multi-layer perceptron (network in net-

work) to learn convolution filter in convolutional networks.

Since dot product is not a decent metric, we may directly

try other metrics. As far as we know, it is the first time to

use cosine similarity or Pearson Correlation Coefficient as

the basic metric to build end-to-end deep network trained

by back propagation.

4. Experiments

We compare our cosine normalization and centered cosine

normalization (PCC) with batch, weight and layer normal-

ization in fully-connected neural networks on the MNIST

and 20NEWS GROUP data sets. Additionally, convolu-

tional networks with different normalization are evaluated

on the CIFAR-10, CIFAR-100 and SVHN data sets. We

also test the networks without any normalization both for

fully-connected and convolutional. The results are much

worse than with normalization, thus we focus only on com-

parison of different normalization techniques.

4.1. Date sets

4.1.1. MNIST

The MNIST (LeCun et al., 1998) data set consists of 28x28

pixel handwritten digit black and white images. The task is

to classify the images into 10 digit classes. There are 60,

000 training images and 10, 000 test images in the MNIST

data set. We scale the pixel values to the [0, 1] range before

inputting to our models.

4.1.2. 20NEWS GROUP

The original training set contains 11269 text documents,

and the test set contains 7505 text documents. Each doc-

ument is classified into one topic out of 20. For conve-

nience of using mini-batch gradient descent, 69 examples

in training set and 5 examples in test set are randomly

dropped. As a result, there are 11200 training examples

and 7500 test examples in our experiments. The words

whose document frequency is larger than 5 are used as

the input features. There are 21567 feature dimensions fi-

nally. Then, the model of Term Frequency-Inverse Docu-

ment Frequency (TF-IDF) is used to transform the text doc-

uments into vectors. After that, each feature is re-scaled to

the range of [0, 1].

4.1.3. CIFAR-10/100

CIFAR-10 (Krizhevsky & Hinton, 2009) is a data set of

natural 32x32 RGB images in 10-classes with 50, 000 im-

ages for training and 10, 000 for testing. CIFAR-100 is

similar with CIFAR-10 but with 100 classes. To augment

data, the images are cropped to 24 x 24 pixels, centrally

for evaluation or randomly for training. Then, a series of

random distortions are applied: 1) randomly flip the image

from left to right. 2) randomly distort the image brightness.

3) randomly distort the image contrast. The procedure of

augmentation is the same as CIFAR-10 example in Tensor-

flow (Abadi et al., 2016).

4.1.4. SVHN

The Street View House Numbers (SVHN) (Netzer et al.,

2011) dataset includes 604, 388 images (both training set

and extra set) and 26, 032 testing images. Similar to

MNIST, the goal is to classify the digit centered in each

32x32 RGB image. We augment the data using the same

procedure as CIFAR-10/100 mentioned above.
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4.2. Protocols

A fully-connected neural network which has two hidden

layers is used in experiments of MNIST and 20NEWS

GROUP. Each hidden layer has 1000 units. The last layer

is the softmax classification layer with 10-class for MNIST,

and 20-class for 20NEWS GROUP. To evaluated the convo-

lutional networks, as shown in Table 1, a VGG-like archi-

tecture with 12 weighted layers is evaluated in experiments

of CIFAR-10/100 and SVHN. Each convolutional layer has

3×3 receptive field with a stride of 1, and each max pool

layer has 2×2 regions with a stride of 1.

Table 1. VGG-like architecture.
conv-512

conv-512

conv-512

maxpool

conv-512

conv-512

conv-512

maxpool

conv-512

conv-512

conv-512

maxpool

fully-connected-1000

fully-connected-1000

fully-connected-10/100

soft-max

ReLU activation function is used in the hidden layers. All

weights are randomly initialized by truncated normal dis-

tribution with 0 mean and 0.1 variance. Mini-batch gradi-

ent descent is used to train the networks. The batch size is

100 in experiments of fully-connected nets, and 128 in con-

volutional nets. In our experiments, we use no re-scaling

and re-shifting after normalization for hidden layers. How-

ever, for the last layer, we re-scale the normalized values

before inputting to softmax. We tried different learning

rate for all normalization techniques, and found that co-

sine normalization can use larger learning rate than other

normalization techniques. The learning rate of the cosine

normalization, centered cosine normalization (PCC), batch

normalization, weight normalization, layer normalization

is 10, 10, 1, 1, 1, respectively in our experiments. The

exponential moving average of parameters with 0.9999 is

used during inference in convolutional networks. No any

regularization, dropout, or dynamic learning rate is used.

We train the fully-connected nets with 200 epochs and con-

volutional nets 105 step since the performances are not im-

proved anymore (in this paper, training epoch refers a cycle

that all training data are used once for training, while train-

ing step refers the times of update for parameters).

4.3. Results

4.3.1. MNIST

The results of test error for MNIST are shown in Figure 2.

As we can see, the converging speeds for different normal-

ization techniques are close. That observation is also true

for other data sets we will present next. That is to say, co-

sine normalization can accelerate the training of networks

as well as other normalization. We can also observe that

centered cosine normalization (Pearson Correlation Coef-

ficient) and cosine normalization achieve similar test er-

rors, and which are slightly better than layer normalization.

Table 2 shows the mean and variance of test error for the

last 50 epochs. Centered cosine normalization achieves the

lowest mean of test error 1.39%, while cosine and layer

normalization achieve 1.40%, 1.43% respectively. Weight

normalization has the highest test error comparing to other

normalization. Although batch normalization gets lowest

test error at some point, it causes large variance of test er-

ror as training continues. Large fluctuation of batch nor-

malization is caused by the change of statistics on different

mini-batch examples.
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Figure 2. The MNIST test error of different normalization tech-

niques, vs. the number of training epoch.

Table 2. The mean and variance of test error in last 50 epochs in

MNIST experiments.

methods mean % variance (10−3)

centered cosine (PCC) 1.39 0

cosine norm 1.40 0.009

batch norm 1.45 6.740

weight norm 1.65 0.054

layer norm 1.43 0.108

4.3.2. 20NEWS GROUP

The results for 20NEWS GROUP are shown in Figure

3 and Table 3. Centered cosine normalization achieves

the lowest test error 29.37%, and cosine normalization
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achieves the second lowest test error 31.73%. The batch

normalization performs poorly in this task of high dimen-

sional text classification. It only achieves 43.94% test er-

ror. Weight normalization (33.55%) and layer normaliza-

tion (33.29%) achieve close performances. Both batch and

weight normalization have larger variance of test error than

other normalization.
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Figure 3. The 20NEWS GROUP test error of different normaliza-

tion techniques, vs. the number of training epoch.

Table 3. The mean and variance of test error in last 50 epochs in

20NEWS experiments.

methods mean % variance (10−2)

centered cosine (PCC) 29.37 0.201

cosine norm 31.73 0.633

batch norm 43.94 1.231

weight norm 33.55 4.775

layer norm 33.29 0.556

4.3.3. CIFAR-10

The results for CIFAR-10 are shown in Figure 4 and Ta-

ble 4. Centered cosine normalization achieves the lowest

test error 6.39%, and cosine normalization achieves the sec-

ond lowest test error 7.33%. The layer normalization also

achieves good performance, better than batch normaliza-

tion, in this experiment. It achieves 7.42% test error. Batch

normalization achieves test error 8.08%, and still has larger

variance of test error than other normalization. Weight nor-

malization achieves the highest test error 8.55%.

4.3.4. CIFAR-100

The results for CIFAR-100 are shown in Figure 5 and Table

5. Centered cosine normalization achieves the lowest test

error 27.49%. Cosine normalization and batch normaliza-

tion achieve very close performance, 31.02% and 31.01%

respectively. But batch normalization have larger variance

of test error. Weight normalization achieves the highest test

error 37.87%.
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Figure 4. The CIFAR-10 test error of different normalization tech-

niques, vs. the number of training step.

Table 4. The mean and variance of test error in last 10000 step in

CIFAR-10 experiments.

methods mean % variance (10−3)

centered cosine (PCC) 6.39 0.076

cosine norm 7.33 0.036

batch norm 8.08 1.052

weight norm 8.55 0.010

layer norm 7.42 0.008
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Figure 5. The CIFAR-100 test error of different normalization

techniques, vs. the number of training step.

Table 5. The mean and variance of test error in last 10000 step in

CIFAR-100 experiments.

methods mean % variance (10−4)

centered cosine (PCC) 27.49 1.03

cosine norm 31.02 0.43

batch norm 31.01 3.23

weight norm 37.87 1.36

layer norm 31.66 0.22
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4.3.5. SVHN

The results for SVHN are shown in Figure 6 and Table 6.

Centered cosine normalization achieves the lowest test er-

ror 2.22%, and cosine normalization achieves the second

lowest test error 2.34%. Batch and layer normalization

achieve test error 2.49%, 2.58% respectively. Weight nor-

malization has the highest test error 2.63%.
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Figure 6. The SVHN test error of different normalization tech-

niques, vs. the number of training step.

Table 6. The mean and variance of test error in last 10000 step in

SVHN experiments.

methods mean % variance (10−4)

centered cosine (PCC) 2.22 0.01

cosine norm 2.34 0.11

batch norm 2.49 0.14

weight norm 2.63 0.03

layer norm 2.58 0.01

5. Conclusions

In this paper, we propose a new normalization technique,

called cosine normalization, which uses cosine similarity

or centered cosine similarity, Pearson correlation coeffi-

cient, instead of dot product in neural networks. Cosine

normalization bounds the pre-activation of neuron within

a narrower range, thus makes lower variance of neurons.

Moreover, cosine normalization makes the model more ro-

bust for different input magnitude. Networks with cosine

normalization can be trained using back propagation. It

does not depend on any statistics on batch or mini-batch

examples, and performs the same computation in forward

propagation at training and inference times. In convolu-

tional networks, it normalizes the neurons from the recep-

tive fields rather than the same layer or batch size. Cosine

normalization is evaluated on different types of network

(fully-connected network and convolutional network) and

on different data sets (MNIST, 20NEWS GROUP, CIFAR-

10/100, SVHN). Experiments show that cosine normaliza-

tion and centered cosine normalization significantly reduce

the test error of classification comparing to batch, weight

and layer normalization.
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