Skip to main content

Granger Causality to Reveal Functional Connectivity in the Mouse Basal Ganglia-Thalamocortical Circuit

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

  • 2722 Accesses

Abstract

In this study we analyze simultaneously recorded spike trains at several levels of the basal ganglia-thalamocortical circuit in freely moving parvalbumin (PV)-deficient and wildtype (WT) (i.e., expressing PV at normal levels) mice. Parvalbumin is a Calcium-binding protein, mainly expressed in GABAergic inhibitory neurons, that affects the dynamics of the Excitatory/Inhibitory balance at the network level. We apply Granger causality analysis in order to measure the functional connectivity of different selected brain areas and their possible alterations due to PV depletion. Our results show that connections between ventromedial prefrontal cortex and Nucleus Accumbens are not affected by PV depletion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abeles, M.: Quantification, smoothing, and confidence limits for single-units’ histograms. J. Neurosci. Methods 5(4), 317–325 (1982)

    Article  Google Scholar 

  2. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., Villa, A.E.: The calcium-binding protein parvalbumin modulates the firing properties of the reticular thalamic nucleus bursting neurons. J. Neurophysiol. 109(11), 2827–2841 (2013)

    Article  Google Scholar 

  3. Alexander, G.E., Crutcher, M.D., DeLong, M.R.: Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 85, 119–46 (1990)

    Article  Google Scholar 

  4. Alexander, G.E., DeLong, M.R., Strick, P.L.: Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–81 (1986)

    Article  Google Scholar 

  5. Asai, Y., Guha, A., Villa, A.E.P.: Deterministic neural dynamics transmitted through neural networks. Neural Netw. 21(6), 799–809 (2008)

    Article  Google Scholar 

  6. Asai, Y., Aksenova, T.I., Villa, A.E.P.: On-line real-time oriented application for neuronal spike sorting with unsupervised learning. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp. 109–114. Springer, Heidelberg (2005). https://doi.org/10.1007/11550822_18

    Chapter  Google Scholar 

  7. Brillinger, D.R.: Nerve cell spike train data analysis: a progression of technique. J. Am. Stat. Assoc. 87(418), 260–271 (1992)

    Article  Google Scholar 

  8. Brillinger, D.R., Villa, A.E.P.: Assessing connections in networks of biological neurons. In: Brillinger, D.R., Fernholz, L.T., Morgenthaler, S. (eds.) The Practice of Data Analysis: Essays in Honor of John W. Tukey, pp. 77–92. Princeton University Press, Princeton (1997)

    Google Scholar 

  9. Cadotte, A.J., DeMarse, T.B., He, P., Ding, M.: Causal measures of structure and plasticity in simulated and living neural networks. PLoS One 3(10), e3355 (2008)

    Article  Google Scholar 

  10. Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time series with extended granger causality. Phys. Lett. A 324(1), 26–35 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ding, M., Chen, Y., Bressler, S.L.: Granger causality: basic theory and application to neuroscience. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time Series Analysis, Chap. 17, pp. 437–460. Wiley-Blackwell, Weinheim (2006)

    Chapter  Google Scholar 

  12. Gruart, A., Muñoz, M.D., Delgado-García, J.M.: Involvement of the CA3-CA1 synapse in the acquisition of associative learning in behaving mice. J. Neurosci. 26(4), 1077–1087 (2006)

    Article  Google Scholar 

  13. Gruart, A., Delgado-García, J.M., Lintas, A.: Effect of parvalbumin deficiency on distributed activity and interactions in neural circuits activated by instrumental learning. In: Wang, R., Pan, X. (eds.) Advances in Cognitive Neurodynamics (V), pp. 111–117. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0207-6_17

    Chapter  Google Scholar 

  14. Kim, S., Putrino, D., Ghosh, S., Brown, E.N.: A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput. Biol. 7(3), e1001110 (2011)

    Article  MathSciNet  Google Scholar 

  15. Krumin, M., Shoham, S.: Multivariate autoregressive modeling and granger causality analysis of multiple spike trains. Comput. Intell. Neurosci. 2010, 9 (2010). https://doi.org/10.1155/2010/752428. Article ID 752428

    Article  Google Scholar 

  16. Lintas, A., Schwaller, B., Villa, A.E.P.: Visual thalamocortical circuits in parvalbumin-deficient mice. Brain Res. 1536, 107–118 (2013)

    Article  Google Scholar 

  17. Marín, O.: Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13(2), 107–20 (2012)

    Article  Google Scholar 

  18. Nedungadi, A.G., Rangarajan, G., Jain, N., Ding, M.: Analyzing multiple spike trains with nonparametric Granger causality. J. Comput. Neurosci. 27(1), 55–64 (2009)

    Article  MathSciNet  Google Scholar 

  19. O’Callaghan, C., et al.: Fronto-striatal gray matter contributions to discrimination learning in Parkinson’s disease. Front. Comput. Neurosci. 7, 180 (2013)

    Google Scholar 

  20. O’Donnell, P., Lavín, A., Enquist, L.W., Grace, A.A., Card, J.P.: Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J. Neurosci. 17(6), 2143–2167 (1997)

    Article  Google Scholar 

  21. Pearl, J.: Causal inference in statistics: an overview. Stat. Surv. 3, 96–146 (2009)

    Article  MathSciNet  Google Scholar 

  22. Protopapa, F., Siettos, C.I., Evdokimidis, I., Smyrnis, N.: Granger causality analysis reveals distinct spatio-temporal connectivity patterns in motor and perceptual visuo-spatial working memory. Front. Comput. Neurosci. 8, 146 (2014)

    Article  Google Scholar 

  23. Russo, S.J., Nestler, E.J.: The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14(9), 609–625 (2013)

    Article  Google Scholar 

  24. Schwaller, B.: The use of transgenic mouse models to reveal the functions of Ca2+ buffer proteins in excitable cells. Biochim. Biophys. Acta 1820(8), 1294–1303 (2012)

    Article  Google Scholar 

  25. Seth, A.K., Barrett, A.B., Barnett, L.: Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35(8), 3293–7 (2015)

    Article  Google Scholar 

  26. Sheehan, T.P., Chambers, R.A., Russell, D.S.: Regulation of affect by the lateral septum: implications for neuropsychiatry. Brain Res. Brain Res. Rev. 46(1), 71–117 (2004)

    Article  Google Scholar 

  27. Steullet, P., et al.: The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress. Mol. Psychiatry 1–9 (2017). (PMID: 29180672)

    Google Scholar 

  28. The NIPY community: Nitime: time-series analysis for neuroscience (2017). http://nipy.org/nitime/. Accessed 27 Apr 2018

Download references

Acknowledgments

The authors wish to thank B. Schwaller for providing the PV-deficient mice, J.M. Delgado-García for his scientific supervision and J.M. González Martin, M. Sánchez Enciso, R. Sánchez-Campusano, J.A. Santos Naharro, and M. Kaczorowski for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Lintas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lintas, A., Abe, T., Villa, A.E.P., Asai, Y. (2018). Granger Causality to Reveal Functional Connectivity in the Mouse Basal Ganglia-Thalamocortical Circuit. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics