Skip to main content

A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

A major challenge in computational and systems neuroscience concerns the quantification of information processing at various scales of the brain’s anatomy. In particular, using human intracranial recordings, the question we ask in this paper is: How can we estimate the informational complexity of the brain given the complex temporal nature of its dynamics? To address this we work with a recent formulation of network integrated information that is based on the Kullback-Leibler divergence between the multivariate distribution on the set of network states versus the corresponding factorized distribution over its parts. In this work, we extend this formulation for temporal networks and then apply it to human brain data obtained from intracranial recordings in epilepsy patients. Our findings show that compared to random re-wirings of the data, functional connectivity networks, constructed from human brain data, score consistently higher in the above measure of integrated information. This work suggests that temporal integrated information may indeed be a good starting point as a future measure of cognitive complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arsiwalla, X.D., Verschure, P.F.M.J.: Integrated information for large complex networks. In: The 2013 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, August 2013

    Google Scholar 

  2. Arsiwalla, X.D., Betella, A., Bueno, E.M., Omedas, P., Zucca, R., Verschure, P.F.: The dynamic connectome: A tool for large-scale 3d reconstruction of brain activity in real-time. In: ECMS, pp. 865–869 (2013)

    Google Scholar 

  3. Arsiwalla, X.D., et al.: Connectomics to semantomics: addressing the brain’s big data challenge. Procedia Comput. Sci. 53, 48–55 (2015)

    Article  Google Scholar 

  4. Arsiwalla, X.D., Herreros, I., Moulin-Frier, C., Sanchez, M., Verschure, P.F.: Is Consciousness a Control Process? pp. 233–238. IOS Press, Amsterdam (2016)

    Google Scholar 

  5. Arsiwalla, X.D., Herreros, I., Verschure, P.: On three categories of conscious machines. In: Lepora, N.F.F., Mura, A., Mangan, M., Verschure, P.F.M.J., Desmulliez, M., Prescott, T.J.J. (eds.) Living Machines 2016. LNCS (LNAI), vol. 9793, pp. 389–392. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42417-0_35

    Chapter  Google Scholar 

  6. Arsiwalla, X.D., Mediano, P.A., Verschure, P.F.: Spectral modes of network dynamics reveal increased informational complexity near criticality. Procedia Comput. Sci. 108, 119–128 (2017)

    Article  Google Scholar 

  7. Arsiwalla, X.D., Moulin-Frier, C., Herreros, I., Sanchez-Fibla, M., Verschure, P.F.: The morphospace of consciousness. arXiv preprint arXiv:1705.11190 (2017)

  8. Arsiwalla, X.D., Verschure, P.: Computing information integration in brain networks. In: Wierzbicki, A., Brandes, U., Schweitzer, F., Pedreschi, D. (eds.) NetSci-X 2016. LNCS, vol. 9564, pp. 136–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28361-6_11

    Chapter  Google Scholar 

  9. Arsiwalla, X.D., Verschure, P.: Why the brain might operate near the edge of criticality. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 326–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_38

    Chapter  Google Scholar 

  10. Arsiwalla, X.D., Verschure, P.: Measuring the complexity of consciousness. Front. Neurosci. 12, 424 (2018)

    Article  Google Scholar 

  11. Arsiwalla, X.D., Verschure, P.F.M.J.: High integrated information in complex networks near criticality. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 184–191. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_22

    Chapter  Google Scholar 

  12. Arsiwalla, X.D., Verschure, P.F.: The global dynamical complexity of the human brain network. Appl. Netw. Sci. 1(1), 16 (2016)

    Article  Google Scholar 

  13. Arsiwalla, X.D.: Network dynamics with BrainX3: a large-scale simulation of the human brain network with real-time interaction. Front. Neuroinformatics 9, 2 (2015)

    Article  Google Scholar 

  14. Ay, N.: Information geometry on complexity and stochastic interaction. Entropy 17(4), 2432–2458 (2015)

    Article  MathSciNet  Google Scholar 

  15. Balduzzi, D., Tononi, G.: Integrated information in discrete dynamical systems: motivation and theoretical framework. PLoS Comput. Biol. 4(6), e1000091 (2008)

    Article  Google Scholar 

  16. Barrett, A.B., Barnett, L., Seth, A.K.: Multivariate granger causality and generalized variance. Phys. Rev. E 81(4), 041907 (2010)

    Article  MathSciNet  Google Scholar 

  17. Barrett, A.B., Seth, A.K.: Practical measures of integrated information for time-series data. PLoS Comput. Biol. 7(1), e1001052 (2011)

    Article  MathSciNet  Google Scholar 

  18. Betella, A., et al.: Understanding large network datasets through embodied interaction in virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 23:1–23:7. ACM, New York (2014)

    Google Scholar 

  19. Betella, A., et al.: Brainx3: embodied exploration of neural data. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 37:1–37:4. ACM, New York (2014)

    Google Scholar 

  20. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  21. Edlund, J.A., Chaumont, N., Hintze, A., Koch, C., Tononi, G., Adami, C.: Integrated information increases with fitness in the evolution of animats. PLoS Comput. Biol. 7(10), e1002236 (2011)

    Article  MathSciNet  Google Scholar 

  22. Griffith, V., Koch, C.: Quantifying synergistic mutual information. In: Prokopenko, M. (ed.) Guided Self-Organization: Inception. ECC, vol. 9, pp. 159–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53734-9_6

    Chapter  Google Scholar 

  23. Oizumi, M., Albantakis, L., Tononi, G.: From the phenomenology to the mechanisms of consciousness: integrated information theory 3.0. PLoS Comput. Biol. 10(5), e1003588 (2014)

    Article  Google Scholar 

  24. Omedas, P., et al.: XIM-engine: a software framework to support the development of interactive applications that uses conscious and unconscious reactions in immersive mixed reality. In: Proceedings of the 2014 Virtual Reality International Conference, VRIC 2014, pp. 26:1–26:4. ACM, New York (2014)

    Google Scholar 

  25. Seth, A.K.: Causal connectivity of evolved neural networks during behavior. Netw. Comput. Neural Syst. 16(1), 35–54 (2005)

    Article  Google Scholar 

  26. Tegmark, M.: Improved measures of integrated information. arXiv preprint arXiv:1601.02626 (2016)

  27. Tononi, G.: An information integration theory of consciousness. BMC Neuroscience 5(1), 42 (2004)

    Article  Google Scholar 

  28. Tononi, G.: Integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150(2–3), 56–90 (2012)

    Google Scholar 

  29. Tononi, G., Sporns, O.: Measuring information integration. BMC Neuroscience 4(1), 31 (2003)

    Article  Google Scholar 

  30. Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)

    Article  Google Scholar 

  31. Wennekers, T., Ay, N.: Stochastic interaction in associative nets. Neurocomputing 65, 387–392 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Research Council’s CDAC project: “The Role of Consciousness in Adaptive Behavior: A Combined Empirical, Computational and Robot based Approach”, (ERC-2013- ADG 341196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xerxes D. Arsiwalla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arsiwalla, X.D., Pacheco, D., Principe, A., Rocamora, R., Verschure, P. (2018). A Temporal Estimate of Integrated Information for Intracranial Functional Connectivity. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics