Skip to main content

A Hierarchy Based Influence Maximization Algorithm in Social Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Abstract

Influence maximization refers to mining top-K most influential nodes from a social network to maximize the final propagation of influence in the network, which is one of the key issues in social network analysis. It is a discrete optimization problem and is also NP-hard under both independent cascade and linear threshold models. The existing researches show that although the greedy algorithm can achieve an approximate ratio of \( \left( {1 - 1/e} \right) \), its time cost is expensive. Heuristic algorithms can improve the efficiency, but they sacrifice a certain degree of accuracy. In order to improve efficiency without sacrificing much accuracy, in this paper, we propose a new approach called Hierarchy based Influence Maximization algorithm (HBIM in short) to mine top-K influential nodes. It is a two-phase method: (1) an algorithm for detecting information diffusion levels based on the first-order and second-order proximity between social nodes. (2) a dynamic programming algorithm for selecting levels to find influential nodes. Experiments show that our algorithm outperforms the benchmarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, F., Li, K.: Detecting hierarchical structure of community members in social networks. Knowl.-Based Syst. 87, 3–15 (2015)

    Article  Google Scholar 

  2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1029–1038. ACM (2010)

    Google Scholar 

  3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 199–208. ACM (2009)

    Google Scholar 

  4. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 57–66. ACM (2001)

    Google Scholar 

  5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM (JACM) 45(4), 634–652 (1998)

    Article  Google Scholar 

  6. Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  Google Scholar 

  7. Goyal, A., Lu, W., Lakshmanan, L.V.: Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 211–220. IEEE (2011)

    Google Scholar 

  8. Jung, K., Heo, W., Chen, W.: IRIE: scalable and robust influence maximization in social networks. In: 2012 IEEE 12th International Conference on Data Mining (ICDM), pp. 918–923. IEEE (2012)

    Google Scholar 

  9. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

    Google Scholar 

  10. Kim, J., Kim, S.K., Yu, H.: Scalable and parallelizable processing of influence maximization for large-scale social networks? In: 2013 IEEE 29th International Conference on Data Engineering (ICDE), pp. 266–277. IEEE (2013)

    Google Scholar 

  11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 420–429. ACM (2007)

    Google Scholar 

  12. Razis, G., Anagnostopoulos, I.: Semantifying twitter: the influence tracker ontology. In: International Workshop on Semantic and Social Media Adaptation and Personalization, pp. 98–103 (2014)

    Google Scholar 

  13. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 75–86. ACM (2014)

    Google Scholar 

  14. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  15. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1039–1048. ACM (2010)

    Google Scholar 

  16. Zhu, C.S., Zhu, F.X., Yang, X.L., School, C., University, W.: Hierarchical community structure based algorithm for influence maximization. Computer Engineering & Design (2017)

    Google Scholar 

Download references

Acknowledgments

The research was supported in part by National Basic Research Program of China (973 Program, No. 2013CB329605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Li, K., Xiang, C. (2018). A Hierarchy Based Influence Maximization Algorithm in Social Networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics