Skip to main content

Convolutional Neural Networks in Combination with Support Vector Machines for Complex Sequential Data Classification

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

Trying to extract features from complex sequential data for classification and prediction problems is an extremely difficult task. Deep Machine Learning techniques, such as Convolutional Neural Networks (CNNs), have been exclusively designed to face this class of problems. Support Vector Machines (SVMs) are a powerful technique for general classification problems, regression, and outlier detection. In this paper we present the development and implementation of an innovative by design combination of CNNs with SVMs as a solution to the Protein Secondary Structure Prediction problem, with a novel two dimensional (2D) input representation method, where Multiple Sequence Alignment profile vectors are placed one under another. This 2D input is used to train the CNNs achieving preliminary results of 80.40% per residue accuracy (Q3), which are expected to increase with the use of larger training datasets and more sophisticated ensemble methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850 (2013)

  2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1–2), 245–271 (1997)

    Article  MathSciNet  Google Scholar 

  3. Krizhevsky, A., Sutskever, I., Hinton, G. E.: ImageNet classication with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: Proceedings of the 26th International Conference on Neural Information Processing Systems, pp. 1097–1105. Curran Associates, Lake Tahoe, Nevada, Red Hook, NY (2012)

    Google Scholar 

  4. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  Google Scholar 

  5. Srinivas, S., Sarvadevabhatla, R.K., Mopuri, K.R., Prabhu, N., Kruthiventi, S.S., Babu, R.V.: A taxonomy of deep convolutional neural nets for computer vision. Front. Robot. AI 2, 36 (2016)

    Article  Google Scholar 

  6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  7. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press, Cambridge (1998)

    Google Scholar 

  8. Wang, S., Peng, J., Ma, J., Xu, J.: Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6, 18962 (2016)

    Article  Google Scholar 

  9. Bluche, T., Ney, H., Kermorvant, C.: Feature extraction with convolutional neural networks for handwritten word recognition. In: Proceedings of the 12th IEEE International Conference on Document Analysis and Recognition, pp. 285–289 (2013)

    Google Scholar 

  10. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, pp. 6645–6649 (2013)

    Google Scholar 

  11. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  12. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15(11), 937–946 (1999)

    Article  Google Scholar 

  13. Kountouris, P., Agathocleous, M., Promponas, V.J., Christodoulou, G., Hadjicostas, S., Vassiliades, V., Christodoulou, C.: A comparative study on filtering protein secondary structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 731–739 (2012)

    Article  Google Scholar 

  14. Rost, B., Sander, C.: Combining evolutionary information and neural networks to predict protein secondary structure. Proteins: Struct. Funct. Bioinform. 19(1), 55–72 (1994)

    Article  Google Scholar 

  15. Salamov, A.A., Solovyev, V.V.: Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignments. J. Mol. Biol. 247(1), 11–15 (1995)

    Article  Google Scholar 

  16. Tang, Y.: Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239 (2013)

  17. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  18. Wallace, I.M., Blackshields, G., Higgins, D.: Multiple sequence alignment. Curr. Opin. Struct. Biol. 15(3), 261–266 (2005)

    Article  MathSciNet  Google Scholar 

  19. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins: Struct. Funct. Bioinform. 34(4), 508–519 (1999)

    Article  Google Scholar 

  20. Heffernan, R., Yang, Y., Paliwal, K., Zhou, Y.: Capturing non-local interactions by long short-term memory bidirectional recurrent neural networks for improving prediction of protein secondary structure, backbone angles, contact numbers and solvent accessibility. Bioinformatics 33(18), 2842–2849 (2017)

    Article  Google Scholar 

  21. Schaffer, A.A., et al.: Nucl. Acids Res. 25, 3389–3402 (1997)

    Google Scholar 

  22. Wang, G., Dunbrack Jr., R.L.: PISCES: a protein sequence culling server. Bioinformatics 19(12), 1589–1591 (2003)

    Article  Google Scholar 

  23. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)

    Article  Google Scholar 

  24. Meyer, D., Wien, F.T.: Support vector machines. R News 1(3), 23–26 (2001)

    MathSciNet  Google Scholar 

  25. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  26. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Tieleman, T., Hinton, G.: Lecture 6.5 - RMSProp, Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. 4(2), 26–31 (2012)

    Google Scholar 

  28. Zeiler, M. D.: ADADELTA: An Adaptive Learning Rate Method. arXiv preprint arXiv:1212.5701 (2012)

  29. Kingma, D. P., Ba, J. L.: Adam: a method for stochastic optimization. In: Suthers, D., Verbert, K., Duval, E., Ochoa, X. (Eds.) Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), Leuven, Belgium, pp. 1–13. ACM, New York, NY, USA (2015)

    Google Scholar 

  30. Rost, B., Sander, C., Schneider, R.: Redefining the goals of protein secondary structure prediction. J. Mol. Biol. 235(1), 13–26 (1994)

    Article  Google Scholar 

  31. Granitto, P.M., Verdes, P.F., Ceccatto, H.A.: Neural network ensembles: evaluation of aggregation algorithms. Artif. Intell. 163(2), 139–162 (2005)

    Article  MathSciNet  Google Scholar 

  32. Fukai, T., Tanaka, S.: A simple neural network exhibiting selective activation of neuronal ensembles: from winner-take-all to winners-share-all. Neural Comput. 9(1), 77–97 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Christodoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dionysiou, A., Agathocleous, M., Christodoulou, C., Promponas, V. (2018). Convolutional Neural Networks in Combination with Support Vector Machines for Complex Sequential Data Classification. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics