Skip to main content

Generalized Multi-view Unsupervised Feature Selection

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11140))

Included in the following conference series:

Abstract

Although many unsupervised feature selection (UFS) methods have been proposed, most of them still suffer from the following limitations: (1) these methods are usually just applicable to single-view data, thus cannot well exploit the ubiquitous complementarity among multiple views; (2) most existing UFS methods model the correlation between cluster structure and data distribution in linear ways, thus more general correlations are difficult to explore. Therefore, we propose a novel unsupervised feature selection method, termed as generalized Multi-View Unsupervised Feature Selection (gMUFS), to simultaneously explore the complementarity of multiple views, and complex correlation between cluster structure and selected features as well. Specifically, a multi-view consensus pseudo label matrix is learned and, the most valuable features are selected by maximizing the dependence between the consensus cluster structure and selected features in kernel spaces with Hilbert Schmidt independence criterion (HSIC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.

  2. 2.

    https://www.flickr.com/.

  3. 3.

    http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.

  4. 4.

    http://www.di.ens.fr/willow/research/stillactions/.

References

  1. Bach, F.R., Jordan, M.I.: Kernel independent component analysis. JMLR 3, 1–48 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: NIPS, pp. 585–591 (2002)

    Google Scholar 

  3. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data. In: SIGKDD, pp. 333–342 (2010)

    Google Scholar 

  4. Cao, X., Zhang, C., Fu, H., et al.: Diversity-induced multi-view subspace clustering. In: CVPR, pp. 586–594 (2015)

    Google Scholar 

  5. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)

    Article  Google Scholar 

  6. Feng, Y., Xiao, J., Zhuang, Y., Liu, X.: Adaptive unsupervised multi-view feature selection for visual concept recognition. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 343–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_26

    Chapter  Google Scholar 

  7. Gretton, A., Bousquet, O., Smola, A., Schölkopf, B.: Measuring statistical dependence with Hilbert-Schmidt norms. In: Jain, S., Simon, H.U., Tomita, E. (eds.) ALT 2005. LNCS (LNAI), vol. 3734, pp. 63–77. Springer, Heidelberg (2005). https://doi.org/10.1007/11564089_7

    Chapter  Google Scholar 

  8. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. JMLR 3, 1157–1182 (2003)

    MATH  Google Scholar 

  9. Han, D., Kim, J.: Unsupervised simultaneous orthogonal basis clustering feature selection. In: CVPR, pp. 5016–5023 (2015)

    Google Scholar 

  10. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS, pp. 507–514 (2006)

    Google Scholar 

  11. Ikizler, N., Cinbis, R.G., Pehlivan, S., et al.: Recognizing actions from still images. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  12. Kumar, A., Rai, P., Daume, H.: Co-regularized multi-view spectral clustering. In: NIPS, pp. 1413–1421 (2011)

    Google Scholar 

  13. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  14. Li, Z., Yang, Y., Liu, J., et al.: Unsupervised feature selection using nonnegative spectral analysis. In: AAAI, vol. 2, pp. 1026–1032 (2012)

    Google Scholar 

  15. Naikal, N., Yang, A.Y., Sastry, S.S.: Informative feature selection for object recognition via sparse PCA. In: ICCV, pp. 818–825 (2011)

    Google Scholar 

  16. Niu, D., Dy, J.G., Jordan, M.I.: Iterative discovery of multiple alternativeclustering views. IEEE T-PAMI 36(7), 1340–1353 (2014)

    Article  Google Scholar 

  17. Qian, M., Zhai, C.: Robust unsupervised feature selection. In: IJCAI, pp. 1621–1627 (2013)

    Google Scholar 

  18. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE T-PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  19. Tang, B., Kay, S., He, H.: Toward optimal feature selection in naive Bayes for text categorization. IEEE T-KDE 28(9), 2508–2521 (2016)

    Google Scholar 

  20. Wang, H., Nie, F., Huang, H.: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics 28(2), 229–237 (2011)

    Article  Google Scholar 

  21. Wang, H., Nie, F., Huang, H.: Multi-view clustering and feature learning via structured sparsity. In: ICML, pp. 352–360 (2013)

    Google Scholar 

  22. Winn, J., Jojic, N.: LOCUS: learning object classes with unsupervised segmentation. In: ICCV, vol. 1, pp. 756–763 (2005)

    Google Scholar 

  23. Yang, Y., Shen, H.T., Ma, Z.: L2, 1-norm regularized discriminative feature selection for unsupervised learning. IJCAI 22(1), 1589 (2011)

    Google Scholar 

  24. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: ICML, pp. 1151–1157 (2007)

    Google Scholar 

  25. Zhao, Z., Wang, L., Liu, H.: Efficient spectral feature selection with minimum redundancy. In: AAAI, pp. 673–678 (2010)

    Google Scholar 

  26. Zhu, P., Hu, Q., Zhang, C., et al.: Coupled dictionary learning for unsupervised feature selection. In: AAAI, pp. 2422–2428 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (Grand No:61602337, 61732011, 61702358, 61402323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Zhang, C., Zhu, P., Hu, Q. (2018). Generalized Multi-view Unsupervised Feature Selection. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11140. Springer, Cham. https://doi.org/10.1007/978-3-030-01421-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01421-6_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01420-9

  • Online ISBN: 978-3-030-01421-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics