Skip to main content

Neural Model for the Visual Recognition of Animacy and Social Interaction

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2018 (ICANN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Included in the following conference series:

Abstract

Humans reliably attribute social interpretations and agency to highly impoverished stimuli, such as interacting geometrical shapes. While it has been proposed that this capability is based on high-level cognitive processes, such as probabilistic reasoning, we demonstrate that it might be accounted for also by rather simple physiologically plausible neural mechanisms. Our model is a hierarchical neural network architecture with two pathways that analyze form and motion features. The highest hierarchy level contains neurons that have learned combinations of relative position-, motion-, and body-axis features. The model reproduces psychophysical results on the dependence of perceived animacy on motion smoothness and the orientation of the body axis. In addition, the model correctly classifies six categories of social interactions that have been frequently tested in the psychophysical literature. For the generation of training data we propose a novel algorithm that is derived from dynamic human navigation models, and which allows to generate arbitrary numbers of abstract social interaction stimuli by self-organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A simple estimate of the encoded angle is given by \(\hat{\theta } = \arg \left( (\sum _m \exp (i\theta _m)\right. \)\(\left. u_{\theta }(\theta _m, t)) / (\sum _m u_{\theta }(\theta _m, t))\right) \), where the \(\theta _m\) are the preferred directions of the neurons.

  2. 2.

    Here the estimator is \(\hat{v} = \arg \left( (\sum _m v_m u_{v}(v_m, t)) / (\sum _m u_{v}(v_m, t))\right) \), where the \(v_m\) are the preferred speeds of the neurons.

References

  1. Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psychol. 57(2), 243–259 (1944)

    Article  Google Scholar 

  2. Tremoulet, P.D., Feldman, J.: Perception of animacy from the motion of a single object. Perception 29, 943–951 (2000)

    Article  Google Scholar 

  3. Tremoulet, P.D., Feldman, J.: The influence of spatial context and the role of intentionality in the interpretation of animacy from motion. Percept. Psychophys. 68(6), 1047–1058 (2006)

    Article  Google Scholar 

  4. Hernik, M., Fearon, P., Csibra, G.: Action anticipation in human infants reveals assumptions about anteroposterior body structure and action. In: Proceedings, Biological Sciences (2014)

    Google Scholar 

  5. Scholl, B.J., Tremoulet, P.D.: Perceptual causality and animacy. Trends Cogn. Sci. 4(8), 299–309 (2000)

    Article  Google Scholar 

  6. Gao, T., Scholl, B.J.: Perceiving animacy and intentionality. In: Rutherford, M.D., Kuhlmeier, V.A., (eds.) Social Perception. The MIT Press (2013)

    Google Scholar 

  7. Blythe, P., Miller, G.F., Todd, P.M.: How motion reveals intention: categorizing social interactions. In: Gigerenzer, G., Todd, P. (eds.) Simple heuristics that make us smart, pp. 257–285. Oxford University Press, London (1999)

    Google Scholar 

  8. Barrett, H.C., Todd, P.M., Miller, G.F., Blythe, P.W.: Accurate judgments of intention from motion cues alone: a cross-cultural study. Evol. Hum. Behav. 26(4), 313–331 (2005)

    Article  Google Scholar 

  9. McAleer, P., Pollick, F.E.: Understanding intention from minimal displays of human activity. Behav. Res. Methods 40, 830–839 (2008)

    Article  Google Scholar 

  10. Schultz, J., Friston, K.J., O’Doherty, J., Wolpert, D.M., Frith, C.D.: Activation in posterior superior temporal sulcus parallels parameter inducing the percept of animacy. Neuron 45(4), 625–635 (2005)

    Article  Google Scholar 

  11. Morito, Y., Tanabe, H.C., Kochiyama, T., Sadato, N.: Neural representation of animacy in the early visual areas: a functional MRI study. Brain Res. Bull. 79(5), 271–280 (2009)

    Article  Google Scholar 

  12. Shultz, S., McCarthy, G.: Perceived animacy influences the processing of human-like surface features in the fusiform gyrus. Neuropsychologia 60, 115–120 (2014)

    Article  Google Scholar 

  13. Blakemore, S.-J., Boyer, P., Pachot-Clouard, M., Meltzoff, A., Segebarth, C., Decety, J.: The detection of contingency and animacy from simple animations in the human brain. Cereb. Cortex 13(8), 837–844 (2003)

    Article  Google Scholar 

  14. Yang, D.Y.-J., Rosenblau, G., Keifer, C., Pelphrey, K.A.: An integrative neural model of social perception, action observation, and theory of mind. Neurosci. Biobehav. Rev. 51, 263–275 (2015)

    Article  Google Scholar 

  15. Lahnakoski, J.M., et al.: Naturalistic FMRI mapping reveals superior temporal sulcus as the hub for the distributed brain network for social perception. Front. Hum. Neurosci. 6, 233 (2012)

    Google Scholar 

  16. Isik, L., Koldewyn, K., Beeler, D., Kanwisher, N.: Perceiving social interactions in the posterior superior temporal sulcus. PNAS 114, E9145–E9152 (2017)

    Article  Google Scholar 

  17. Sliwa, J., Freiwald, W.A.: A dedicated network for social interaction processing in the primate brain. Science 356(6339), 745–749 (2017)

    Article  Google Scholar 

  18. Walbrin, J., Downing, P., Koldewyn, K.: Neural responses to visually observed social interactions. Neuropsychologia 112, 31–39 (2018)

    Article  Google Scholar 

  19. Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning. Cogn. Reinf. Learn. High. Cogn. 113, 329–349 (2009)

    Google Scholar 

  20. Shu, T., Peng, Y., Fan, L., Lu, H., Zhu, S.-C.: Perception of human interaction based on motion trajectories: from aerial videos to decontextualized animations. Top. Cogn. Sci. 10(1), 225–241 (2018)

    Article  Google Scholar 

  21. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999)

    Article  Google Scholar 

  22. Giese, M.A., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nat. Rev. Neurosci. 4, 179–192 (2003)

    Article  Google Scholar 

  23. Jhuang, H., Serre, T., Wolf, L., Poggio, T.: A biologically inspired system for action recognition. In: IEEE 11th International Conference on Computer Vision (2007)

    Google Scholar 

  24. Fleischer, F., Caggiano, V., Thier, P., Giese, M.A.: Physiologically inspired model for the visual recognition of transitive hand actions. J. Neurosci. 15(33), 6563–80 (2013)

    Article  Google Scholar 

  25. Fleischer, F., Christensen, A., Caggiano, V., Thier, P., Giese, M.A.: Neural theory for the perception of causal actions. Psychol. Res. 76(4), 476–493 (2012)

    Article  Google Scholar 

  26. Caggiano, V., Fleischer, F., Pomper, J.K., Giese, M.A., Thier, P.: Mirror neurons in Monkey premotor area F5 show tuning for critical features of visual causality perception. Current Biology 26(22), 3077–3082 (2016)

    Article  Google Scholar 

  27. Warren, W.H.: The dynamics of perception and action. Psychol. Rev. 113(2), 358–389 (2006)

    Article  MathSciNet  Google Scholar 

  28. Schner, G., Dose, M.: A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion. Robot. Auton. Syst. 10(4), 253–267 (1992)

    Article  Google Scholar 

  29. Fajen, B.R., Warren, W.H.: Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Exp. Psycholology Hum. Percept. Perform. 1(3), 184–184 (2003)

    Google Scholar 

  30. di Carlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)

    Article  Google Scholar 

  31. You, D., Hamsici, O.C., Martinez, A.M.: Kernel optimization in discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 33(3), 631–638 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by: HFSP RGP0036/2016; the European Commission HBP FP7-ICT2013-FET-F/604102 and COGIMON H2020-644727, the DFG KA 1258/15-1, and BMBF CRNC FK: 01CQ1704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin A. Giese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hovaidi-Ardestani, M., Saini, N., Martinez, A.M., Giese, M.A. (2018). Neural Model for the Visual Recognition of Animacy and Social Interaction. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics