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Abstract. Clinical data is usually observed and recorded at irregular
intervals and includes: evaluations, treatments, vital sign and lab test
results. These provide an invaluable source of information to help di-
agnose and understand medical conditions. In this work, we introduce
the largest patient records dataset in diabetes research: King Abdul-
lah International Research Centre Diabetes (KAIMRCD) which includes
over 14k patient data. KAIMRCD contains detailed information about
the patient’s visit and have been labelled against Type 2 Diabetes Mel-
litus (T2DM) by clinicians. The data is processed as time series and
then investigated using temporal predictive Deep Learning models with
the goal of diagnosing T2DM. Long Short-Term Memory (LSTM) and
Gated-Recurrent Unit (GRU) are trained on KAIMRCD dataset and are
demonstrated here to outperform classical machine learning approaches
in the literature with over 97% accuracy.

Keywords: Type 2 Diabetes Mellitus · Deep Learning · Long Short-
Term Memory · Gated-Recurrent Unit · King Abdullah International
Research Centre Diabetes.

1 Introduction

Diabetes is an increasingly growing medical condition worldwide. The estimated
number of diabetic patients globally was 415 million in 2015 and is expected to
affect one person in 10 by 2040 [6]. The number of people who are borderline
diabetic is rapidly increasing. The latest estimates indicate that 35.3% of the
adults in the UK are pre-diabetic [18]. Patients suffering from diabetes develop
serious and complicated health problems to vital organs such as the kidneys,
eyes, as well as the heart. By the end of 2015, there were 5 million deaths caused
by diabetes worldwide[6].

There are three types of diabetes: I) Type 1 Diabetes occurs when the body’s
defence system attacks the pancreas cells, causing it to stop producing the needed
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insulin. II) Type 2 Diabetes occurs when the body fails to respond to the in-
sulin produced. III) Gestational Diabetes which happens when hormonal changes
during pregnancy make the body resistant to the insulin [19].

Type 2 Diabetes Mellitus (T2DM) is the most common form accounting for
91% to 95% of all cases [6]. It is the main contributor to causes of death from
diabetes and its associated cost. Furthermore, T2DM is difficult to diagnose
because it does not have clear clinical symptoms. It often stays undetected for
a long time as a result of the slow development of its symptoms [1]. Thus, an
early diagnosis of T2DM can assist with delaying any long-term complications.

In many hospital systems, patient data, such as vital signs and lab tests, are
routinely collected and stored with an associated time stamp which we will refer
to as “Clinical Time Series Data”. Patient clinical data is usually carried out
at irregular times and stored in the hospital record systems. The frequency of
taking these measurements is different for each patient, based on the physician’s
decisions. In addition, patients differ in their visit patterns (e.g., in-patient or
emergency visits), therefore the stay length for each patient varies from few hours
to days, weeks or even months.

In this study, we use King Abdullah International Research Centre Diabetes
(KAIMRCD) dataset. KAIMRCD is a unique dataset of 14,609 patient visits
which have been clinically tested against T2DM. It contains the personal details
of every patient such as age and gender along with the vital signs and lab test
results for every visit. The availability of such large dataset makes it possible to
train advance machine learning techniques, e.g. deep learning models to predict
T2DM.

The use of Recurrent Neural Networks (RNNs) has recently redefined the
standards for several research areas involving sequential data such as speech
recognition, natural language processing and machine translation [8] [11]. De-
spite their success, RNNs are not usually fit for problems with long tempo-
ral dependencies due to the exploding gradients problem [7]. Long Short-Term
Memory (LSTM) [9] and Gated-Recurrent Unit (GRU) [5] [3], were specifically
developed to model problems that involve both long and short temporal depen-
dencies. Thus, LSTM and GRU have demonstrated the ability to model complex
clinical data in variety of medical applications such as diseases diagnosis [13] [14].

The main contributions of this paper are: I) Introducing the largest diabetes
patients time series data. II) Applying temporal deep learning models: LSTM
and GRU to predict chronic disease, T2DM. III) Integrating non-sequential risk
factors into the time series data such as gender and age. IV) Investigating the
effect of input size on the performance of the built LSTM and GRU models.

2 Related Work

Machine learning has been successfully applied to clinical data and have been
demonstrated in tasks such as the prediction of patient progress and length of
stay. Disease diagnosis prediction using time series data is a growing field of
research for machine learning. Several neural network models have been applied
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Table 1. Neural Network Models for T2DM Diagnosis

Study Dataset No of
Features

No of
Records

Data Avail-
ability

Accuracy

Venkatesan et al. [22] Private Date 9 1800 No 91.3%

Meng et al. [16] Private Date 12 1487 No 72.59%

Temurtas et al. [21]
PPID 8 768 Yes

82.37%
Motka et al. [17] 90.49%
Karegowda et al. [10] 84.71%
Polat et al. [20] 89.47%

GRU KAIMRCD 30 14,609 Upon request 97.3%

for T2DM diagnosis prediction, summarised in Table 1. Multi-Layer Perceptron
models were applied on various datasets [22, 16, 21]. Motka et al. [17] and Polat
et al. [20] used Artificial Neural Fuzzy Inference Systems (ANFIS). Genetic Al-
gorithms (GA) with Back-propagation Neural Network were also applied [10].
It is important to note that the majority of these models were applied to the
Pima Indian Diabetes Data (PIDD) [12] and used small datasets that had no
temporal information with a small number of features.

To the best of our knowledge, there are no studies that looked at the T2DM
diagnosis from a time-series perspective. We are the first to apply deep learning,
LSTM and GRU in particular, for classification in T2DM diagnosis as a time
series (vital signs or lab test results) data. There are a few recent studies that
are related to our work. These studies used RNN models together with gen-
eral clinical time series datasets for multi-disease (T2DM was not among them)
diagnosis classification [13, 14]. However, the time series datasets used in these
studies were not specifically collected for the purpose of diabetes diagnosis.

Lipton et al. [13] proposed the first model that applied LSTM on a clinical
dataset. The authors used LSTM on a Children’s Intensive Care Unit (ICU)
dataset to predict multiple diseases diagnosis (such as Asthma, Hypertension
and Anemia) using 13 lab test results. The LSTM model was built to classify
128 diseases with competitive accuracy. Another study [4], applied GRU on
larger and longitudinal patient data extracted from the general patients clinical
records. Similar to Lipton’s study, the aim of the study was mainly to predict
disease diagnosis. However, The features used in this study are different in type
than the ones used in Lipton’s study. The authors did not make use of patient’s
observation records (vital signs or lab test results). Instead, they used previous
patient’s diagnoses as input to predict future diseases. However, it was not clear
how many and what diseases have been examined for evaluating the model.

Both LSTM models as applied in [13] [14], and GRU model as applied in
[4], have shown promising results with regard to multi-disease diagnosis. The
number of samples for each disease, on which the models were trained, was not
reported in either studies.

The work is motivated by the temporal nature of clinical data which would
potentially be better modelled by a model that directly models sequential/temporal
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data similar to GRU/LSTM. This is particularly relevant given the size of our
dataset, KAIMRCD, which considerably larger than any reported in the liter-
ature for the diagnosis of T2DM. Our models incorporate not only the clinical
vital signs and lab test results, but also non-sequential data such as age and
gender, which are important risk factors for T2DM [6].

3 Dataset

King Abdullah International Medical Research Center (KAIMRC) is one of the
leading institutions in health research in the Middle East. The KAIMRCD5

dataset was collected by Ministry of National Guard Health Affairs (NGHA)
from the main National Guard Hospitals located in three populated regions6.
It is part of the hospital care service procedures to clinically diagnose visitors
against T2DM. The collected data contains records of clinical diagnosis of T2DM
from the full visits history of 14,609 patient visits.

KAIMRCD dataset was collected over the period between 2010 and 2015.
It contains 41 million time-stamped results for lab tests, such as Blood Urea
Nitrogin (BUN), cholesterol (Chol) and Mean Corpuscular Hemoglobin (MCH).
It also holds time-stamped data about patient vital signs such as Body Mass
Index (BMI) and Hypertension. Other important features are also included, such
as visit type (inpatient, outpatient or emergency), discharge type (home, referred
to another hospital, patient died), gender, patient’s age at the visit and service
type (e.g. Cardiology, Neurology, Endocrinology) 7. The data is imbalanced with
62% of the patients are diagnosed with diabetes, hence F1 measure is used as an
evaluation metric rather than accuracy. Figure 1 shows the distribution of the
data projected on a two-dimensional space using t-SNE [15].

Due to the variety of clinical procedures involved in different patient visits,
irregularities in data is expected. The frequency and the order of the clinical
procedures varies from one patient to another. Hence the episodes of patient
data vary with different sets of measures and their frequencies, pre-processing
the data for the purpose of this analysis is critical.

3.1 Data Pre-processing

Each patient visit is described by a set of measures. These measures are repre-
sented as episodes. An episode contains irregular time-stamped vital signs and
lab results. In addition, the non-sequential data (gender and age) is also inte-
grated into the episodes.

Every sequence element consists of 30 features (gender, age and 28 vital
signs and lab readings)7. The interval between the sequences is one day. There
are three types of features, starting with constant features which do not change
during a patient’s visit, such as age and gender. Frequently changing features are

5 Access to KAIMRCD dataset can be obtained upon official request to KAIMRC.
6 Western, Central and Eastern regions of Saudi Arabia.
7 For space reasons the full list of features can not be listed here
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Fig. 1. KAIMRCD dataset distribution.

collected on a daily basis, or the average of multiple daily measures, such as vital
signs. Finally, the infrequently changing features are collected on an interval of
more than a day. As a result, features that may be unavailable for some patients
are considered to be missing. The representation of an episode of patient x for
our proposed solution is defined as:

Episodex =


t1 : R11 R12 ... R1m

t2 : R21 R22 ... R2m

... ... ... ...

... ... ... ...
tn : Rn1 Rn2 ... Rnm


where Rij : is the reading values (risk factors) at day i for vital signs, lab test
results and the embedded non-sequential values (gender and visit age) j. n is
the length of the sequence (the input size). m is the number of readings for each
sequence.

Patient visit (Episode) consists of a sequence length n (based on the length of
stay in hospital) at time t. If the number of days for a patient’s visit is less than
n, zero padding technique is applied to compensate for the missing sequences.
For each sequence there are m reading values (R). If Rij is missing then it is
assigned the value from the previous day (Rij = R(i−1)j). In the case that there
was no previous reading, Rij is replaced with zero.

4 Methods

Recurrent neural networks, and its variants, have achieved unprecedented ac-
curacy in many domains with sequential data [11]. Unlike other deep learning
methods, RNNs have memory cells allowing the previous output to influence the
state for the next output, which proved to be a useful feature for sequential data.
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Here, we investigate the performance of temporal models: LSTM and GRU, in
diagnosing T2DM from time-stamped sequences of patient observations. Given a
sequence of observations for a patient xt : R1, R2, ...Rm at time t, the activation
function of a recurrent hidden unit ht is:

ht = ν(Uxt +Wh(t−1)
), (1)

where ν is a non-linear function for the sum of the hidden state, U , matrix of
the current patient’s sequences, and W is a matrix of the weight input of the
previous sequence.

In the experiments, we use n previous sequences of patient’s observations
(series) to explore the impact of previous dependencies in influencing the classi-
fication decision of T2DM. In practice, RNNs have demonstrated a limited per-
formance when learning from sequences with long-term dependencies [2]. This
is mainly caused by limitations in the gradient decent approach, as the gradient
tends to either vanish or explode when modelling long dependencies. Hochreiter
and Schmidhuber addressed this problem by introducing LSTM [9]. LSTM, uses
a sophisticated structure with multiple cell and gated unites (forget and input)
to cope with learning from long-term dependencies, described by:

ft = σ(Wf .[h(t−1), xt] + bf ) (2)

it = σ(Wi.[h(t−1), xt] + bi) (3)

C̃t = tanh(WC .[h(t−1), xt] + bC) (4)

Ct = ft × C(t−1) + it × C̃t (5)

ot = σ(Wo[h(t−1), xt] + bo) (6)

ht = ot × tanh(Ct), (7)

where f represents the forget gate of the cell with a sigmoid activation function
σ and the weight W and the learned bias b ( Eq. 2). i is the input gate (Eq.
3) which is used in combination with a non-linear(tanh) layer C̃. C̃ is the new
value for cell state ( Eq. 4). The update state value C is then the sum of the
multiplication of the old state C(t−1) by ft, which decides on what to forget, and

the new value C̃ multiplied by the input gate value it (Eq. 5). Finally o is the
output of the sigmoid gate which is used with the cell state C to produce the
final decision (Eq. 6 and Eq. 7) whether the patient x is diabetic or not.

Similar to LSTMs, GRU is used to deal with long-term dependencies. The
main difference is that GRU merges the forget and input gates in one unit gate
called the update gate. This means that previous memory is kept based on the
size of the new dependencies (input). GRUs do not have a protected hidden
cell state which gives full access to the corresponding allocated memory content.
GRU is formally defined as follows:

zt = σ(Wf × [h(t−1), xt]) (8)
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rt = σ(Wr.[h(t−1), xt]) (9)

h̃t = tanh(WC .[rt × h(t−1), xt]) (10)

ht = (1 − zt) × h(t−1) + zt × h̃t, (11)

where z and r represent the update gate and the reset gate values. These gates
are calculated in a similar way to calculating the input gate and the forget gate
of LSTM, except that GRU does not consider adding these values in the formula
(Eq. 8) and (Eq. 9). The other difference is that instead of changing the current
hidden layer h as in the LSTM method, the input x and the previous layer h(t−1)

modify the update gate and the reset gate values in the GRU method. Then the
current layer is updated accordingly by z and r (Eq. 11) [4].

5 Experimental Setup

Both LSTM and GRU models were implemented, to allow for comparison be-
tween their performance in predicting the diagnosis of T2DM. The neural net-
works of both models have similar architectures. The model contains two LSTM/
GRU layers and two dense layers. The first hidden layer has 128 neurons with a
sigmoid activation function,while the second contains 64 neurons with ReLU ac-
tivation function. The two dense layers also use the ReLU and sigmoid activation
functions, with 16 and 1 neurons respectively.

LSTM and GRU are trained using 90% of the data. The remaining 10% is
then used for testing. The models use adam optimizer with 0.001 learning rate.
The optimisation score function used in both models is root mean squared error.
Before preforming the prediction on the test data, the models were trained for
100 epochs. In our experiments, we investigated the performance of each model
for six different variations of input sizes (3, 5, 8, 10, 12, and 15). The models
are trained and tested using 10-folds cross-validation approach. We report the
macro, micro and weighted-averaged F1 scores to compare and evaluate the
performance of the classifiers.

Baseline Models We compared our results against three commonly used base-
line models: Logistic Regression (LR), Support Vector Machine (SVM), and
Multi-Layer Perceptron (MLP). These models do not model temporal dynamics
in the data, hence the patient visits are assumed independent. Only sequences
with fewer missing readings are considered. MLP has similar architecture to
LSTM/GRU and uses the same optimiser settings.

6 Results

Table 2 shows the performance metrics obtained using LSTM, GRU and base-
line models. In table 2, the results show that all of the neural network models,
including MLP, with all of the different number of input sizes, achieved better
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Table 2. Models performance in T2DM diagnosis

Input size Model F1 Weighted F1 Macro F1 Micro

1 Sequence*
LR 0.7790 0.7517 0.8041

SVM 0.7452 0.7194 0.7576

3 Sequences
MLP 0.9409 0.9371 0.9411

LSTM 0.9631 0.9649 0.9670
GRU 0.9706 0.9689 0.9705

5 Sequences
MLP 0.9442 0.9406 0.9443

LSTM 0.9592 0.9566 0.9596
GRU 0.9634 0.9612 0.9634

8 Sequences
MLP 0.9452 0.9417 0.9451

LSTM 0.9565 0.9536 0.9567
GRU 0.9714 0.9694 0.9715

10 Sequences
MLP 0.9508 0.9476 0.9509

LSTM 0.9512 0.9485 0.9508
GRU 0.9729 0.9711 0.9730

12 Sequences
MLP 0.9440 0.9403 0.9440

LSTM 0.9646 0.9623 0.9646
GRU 0.9624 0.9598 0.9627

15 Sequences
MLP 0.9454 0.9421 0.9451

LSTM 0.9669 0.9650 0.9667
GRU 0.9656 0.9632 0.9657

Table 2: shows the performance metrics for LSTM and GRU and baseline classifiers.
* Most complete sequence with fewer missing data among the whole patient’s visit.

performance than the models identified in the related work section (Table 1),
and the baseline shallow models (LR and SVM).

Both LSTM and GRU outperformed MLP models and achieved promising
results using different input sizes (from 3 to 15). GRU with 10 input sequence
length is the best performing model with regard to the reported measures (results
in bold), but with insignificant difference to GRU with only 3 sequences. Table 2
also shows that GRU models with 3 and 10 sequence length, have better results
compared to the same model with larger input size. This is not the same for the
LSTM models, which show better results with longer dependencies. Fig 2 shows
the performance trend of LSTM, GRU and MLP against the input sizes. Fig 3
demonstrates the models performance results. Fig 3 shows that GRU results are
distributed in smaller areas to LSTM, which indicates that GRU approach can
have more consistent results when used for predicting T2DM.

6.1 Discussion and Conclusion

In this paper, we investigated the use of temporal predictive deep neural network
models for the diagnosis of T2DM. The proposed models (LSTM and GRU),
using clinical time-stamped data and without intensive feature engineering can
achieve very high accuracy with as short as 3 sequences. The models were trained
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Fig. 2. Change of F1 measure with the length of the input size.

and tested with different input sizes using unique and large dataset (KAIMRCD).
The results were compared to common baseline classifiers (LR, SVM and MLP)
using the same dataset. LSTM and GRU models outperformed the baseline
classifiers and achieved 97.3% accuracy. Due to the lack of datasets that are
specific to T2DM, replicating this work using different datasets can be difficult.

Fig. 3. F1 Micro result for LSTM, GRU and MLP Models

The models were able to predict with a high accuracy 97% even with a 3-day
length sequence. This is very significant finding as it would reduce the time and
associated cost required to perform further tests and delivers early diagnosis.
Further work may investigate the impact of applying different techniques for
handling the missing data on KAIMRCD data.
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