Skip to main content

SPSA for Layer-Wise Training of Deep Networks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Abstract

Concerned with neural learning without backpropagation, we investigate variants of the simultaneous perturbation stochastic approximation (SPSA) algorithm. Experimental results suggest that these allow for the successful training of deep feed-forward neural networks using forward passes only. In particular, we find that SPSA-based algorithms which update network parameters in a layer-wise manner are superior to variants which update all weights simultaneously.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baldi, P., Sadowski, P., Lu, Z.: Learning in the machine: random backpropagation and the deep learning channel. arXiv:1612.02734 [cs.LG] (2016)

  2. Bauckhage, C., Thurau, C.: Making archetypal analysis practical. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 272–281. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_28

    Chapter  Google Scholar 

  3. Bengio, Y., Lamblin, P., Popovic, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Proceedings NIPS (2006)

    Google Scholar 

  4. Choy, M., Srinivasan, D., Cheu, R.: Neural networks for continuous online learning and control. IEEE Trans. Neural Netw. 17(6), 2006 (2006)

    Google Scholar 

  5. Courbariaux, M., Bengio, Y., David, J.P.: Training deep neural networks with low precision multiplications. arXiv:1412.7024 [cs.LG] (2014)

  6. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D., Wilson, A.: Loss surfaces, mode connectivity, and fast ensembling of DNNs. arXiv:1802.10026 [stat.ML] (2018)

  7. Hinton, G., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. In: Proceedings NIPS (2006)

    Article  MathSciNet  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1–42 (1997)

    Article  Google Scholar 

  9. Hooke, R., Jeeves, T.: Direct search solution of numerical and statistical problems. J. ACM 8(2), 212–229 (1961)

    Article  Google Scholar 

  10. Izmailov, P., Garipov, D.P.T., Vetrov, D., Wilson, A.: Averaging weights leads to wider optima and better generalization. arXiv:1803.05407 [cs.LG] (2018)

  11. Jaderberg, M., et al.: Decoupled neural interfaces using synthetic gradients. arXiv:1608.05343 [cs.LG] (2016)

  12. Kiefer, J., Wolfowitz, J.: Estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462–466 (1952)

    Article  MathSciNet  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  14. Lillicrap, T., Cownden, D., Tweed, D., Akerman, J.: Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7(13276) (2016)

    Article  Google Scholar 

  15. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: Proceedings ICLR (2017)

    Google Scholar 

  16. Nelder, J., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308–313 (1965)

    Article  MathSciNet  Google Scholar 

  17. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22(3), 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  18. Rosenfeld, A., Tsotsos, J.: Intriguing properties of randomly weighted networks: generalizing while learning next to nothing. arXiv:1802.00844 [cs.LG] (2018)

  19. Rummelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  20. Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A., Peters, J., Schmidhuber, J.: Policy gradients with parameter-based exploration for control. In: Kůrková, V., Neruda, R., Koutník, J. (eds.) ICANN 2008. LNCS, vol. 5163, pp. 387–396. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87536-9_40

    Chapter  Google Scholar 

  21. Smith, L.: Cyclical learning rates for training neural networks. In: Proceedings Winter Conference on Applications of Computer Vision. IEEE (2017)

    Google Scholar 

  22. Song, Q., Spall, J., Soh, Y.C., Nie, J.: Robust neural network tracking controller using simultaneous perturbation stochastic approximation. IEEE Trans. Neural Netw. 19(5), 817–835 (2008)

    Article  Google Scholar 

  23. Spall, J.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992)

    Article  MathSciNet  Google Scholar 

  24. Spall, J.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Hoboken (2003)

    Book  Google Scholar 

  25. Taylor, G., Burmeister, R., Xu, Z., Singh, B., Patel, A., Goldstein, T.: Training neural networks without gradients: a scalable ADMM approach. In: Proceedings ICML (2016)

    Google Scholar 

  26. Thurau, C., Kersting, K., Wahabzada, M., Bauckhage, C.: Convex non-negative matrix factorization for massive datasets. Knowl. Inf. Syst. 29(2), 457–478 (2011)

    Article  Google Scholar 

  27. Vande Wouver, A., Renotte, C., Remy, M.: On the use of simultaneuous perturbation stochastic approximation for neural network training. In: Proceedings American Control Conference. IEEE (1999)

    Google Scholar 

  28. Williams, R.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Wulff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wulff, B., Schuecker, J., Bauckhage, C. (2018). SPSA for Layer-Wise Training of Deep Networks. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics