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Abstract. In this study, we analyzed the activity of monkey V1 neu-

rons responding to grating stimuli of different orientations using inference

methods for a time-dependent Ising model. The method provides optimal

estimation of time-dependent neural interactions with credible intervals

according to the sequential Bayes estimation algorithm. Furthermore, it

allows us to trace dynamics of macroscopic network properties such as

entropy, sparseness, and fluctuation. Here we report that, in all exam-

ined stimulus conditions, pairwise interactions contribute to increasing

sparseness and fluctuation. We then demonstrate that the orientation of

the grating stimulus is in part encoded in the pairwise interactions of

the neural populations. These results demonstrate the utility of the state-

space Ising model in assessing contributions of neural interactions during

stimulus processing.
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1 Introduction

Since neural population activity is constrained by external stimuli and biophys-
ical mechanisms of the neural networks, understanding the statistical regularity
of the population activity is an important step toward revealing these underlying
mechanisms and further elucidating stimulus coding strategies by the popula-
tions of neurons. In order to understand their complex activity patterns, an
Ising model has been applied frequently (see [8,5,14] and references therein).
This model originally developed in statistical mechanics to describe interacting
magnetic spins is suitable for analyzing the collective behavior of binary patterns.
It is also used in machine learning applications as the Botlzmann machine.

Most of the analyses using the Ising model assumed stationary data in which
firing rates and correlations are expected to be constant in time. The static
model prohibited analyses of in-vivo data, in which firing rates and even corre-
lations are known to evolve over time [1,15]. As a solution, a state-space model
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2 Neural interactions contribute to sparseness, fluctuation, and stimulus coding

was developed that augmented the stationary Ising model to one that considers
dynamics in both firing rates and correlations [9,10,4]. However, the utility of
the method has not been fully demonstrated yet.

In this study, we analyzed the activity of V1 neurons using the state-space
Ising model. We report that pairwise interactions contribute to increasing tem-
poral sparseness and fluctuation, and encoding stimulus information.

2 Methods

2.1 Data Description and Preprocessing

Population activity of V1 neurons of 3 anesthetized macaque monkeys exposed
to visual stimulus was analyzed. It was recorded by Smith and Kohn [12]. The
data is available at CRCNS.org [6]. The experimental methods used to perform
recordings are briefly explained in [12] and are detailed in [3]. To summarize,
an array of 100 microelectrodes was used to perform simultaneous recordings
of approximately 100 neurons per monkey. The electrodes were implanted in
the primary visual area (V1). The stimuli shown to the monkeys consisted of
sinusoidal gratings at 12 different equally separated orientations from 0◦ (vertical
gratings) to 330◦. The spike data for each trial lasted 1.28 s. During a trial, a
monkey was shown gratings of only one orientation. An isoluminant gray screen
was presented during 1.5 s between trials. Temporal and spacial frequencies of
the gratings were set to those typically preferred by parafoveal V1 neurons. The
experiment was repeated 200 times for every stimulus orientation and for every
monkey.

The timing of spikes of different single neurons in this data set was obtained
by spike sorting based on a mixture decomposition method [11], allowing to
discriminate waveforms from different neurons simultaneously measured by the
microelectrodes. To consider only recordings of good quality, we excluded neu-
rons with a signal-to-noise ratio lower than 2.75 and neurons with a firing rate
lower than 2 spikes/s for all stimuli, as suggested by Smith and Kohn [12]. This
left approximately 40 neurons per monkey.

In the present study, we analyzed nearly simultaneous activity of the neural
populations. For this goal, we constructed binary spike trains by binning the
spike timing sequences. Time bins (∆t) of 10 ms were used, giving a total of 128
time bins (T ) for the duration of the stimulus presentation. For a given trial and
neuron, if one or more spikes occurred between times (i − 1)∆t and i∆t s, the
value 1 is attributed to the ith time bin. Otherwise, the value 0 is attributed.

2.2 The State-Space Ising Model for a Neural Population

The model used to analyze neural activity is the Ising model (or the Boltzmann
machine), a model frequently used in statistical physics and machine learning.
For a binary vector of length N , the Ising model is a probability distribution of
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all 2N possible patterns. By considering up to pairwise interactions, the Ising
model is given by

p(x1, x2, . . . , xN |θ) = exp





∑

i

θixi +
∑

i<j

θijxixj − ψ(θ)



 . (1)

For a neural system, N is the number of neurons and the binary vector x =
(x1, x2, . . . , xN )′ is the activity of the population, where each binary variable xi
is the activity of the ith neuron (1 if the neuron exhibits a spike and 0 if it is
silent). θ = (θ1, θ2, . . . , θN , θ12, . . . , θN−1,N)′ is a parameter vector of the Ising
model. The second-order parameters θij represent pairwise interactions between
neurons. ψ is a log normalization function which serves to ensure the sum of all
probabilities equals to 1. The model in this form is not dependent on time. Hence
fitting this model to the data assumes that samples are generated from the same
distribution independently at every time step. However, since neuronal activity
of in-vivo animals is dynamic [1,15], it is necessary to augment the model by
allowing θ to vary in time. Naively fitting the Ising model at each time step
would result in overfitted models unless we had an excessive amount of data. To
avoid the issue, we used a sequential Bayesian algorithm to estimate the time-
varying parameters. In this framework, we assume the following dynamics for
the state θt:

θt = θt−1 + ξt(Q), (2)

for t = 2, . . . , T . At the first time bin, we consider a Gaussian prior defined by
θ1 ∼ N (µ,Σ). ξt(Q) is a 0-mean Gaussian noise added at every time step to
obtain stochastic dynamics. The covariance matrix of the noise is given by Q =
λ−1I, where λ is the precision and I is the identity matrix. Under the principle
of maximizing the marginal log likelihood, it is possible to obtain the optimal
set of hyperparameters w = [µ,Σ,Q] by using the expectation-maximization
(EM) algorithm. The EM algorithm also provides the posterior density of the
state θt for all time bins given the observed data, namely a distribution of the
underlying process θ1:T :

p(θ1:T |x1:T ,w) =
p(x1:T |θ1:T )p(θ1:T |w)

p(x1:T |w)
. (3)

This posterior density is approximated by a Gaussian distribution. The uncer-
tainty for the parameter estimation is then assessed by its covariance matrix.
See [9,10] for details of the EM algorithm and sequential Bayes method.

We randomly selected 3 populations of 12 neurons for each monkey (a total
of 9 populations). A separate dynamic state-space Ising model was fitted for
each stimulus orientation for each population. To quantitatively determine the
effect of pairwise interactions, we compared models fitted to the original data
with models fitted to surrogate data (surrogate models). The surrogate data
was constructed by randomizing the order of the trials for every neuron. This
shuffling of the data destroys correlations between neurons, but preserves their
spike rate dynamics. Thus, by comparing original models with surrogate models,
we can determine if the observed interactions have significant contributions.
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2.3 Macroscopic Properties of the Dynamic Ising Model

After fitting the models, we can investigate the dynamics of the macroscopic
properties of the populations during the stimulus exposition. First, the entropy,
or the expectation of the information content, is given by

Spair(t) = 〈− log p(x|θt)〉x|θt
, (4)

where the brackets indicate the expectation by the observation density p(x|θt).
The model containing N binary elements with the maximal entropy is the uni-
form model where each element has a firing rate of 0.5. Such a model has entropy
S0 = N log 2. By adding information about the firing rates, we reduce the en-
tropy by constraining the model. We call Sind the entropy of the Ising model
projected to an independent model which considers the firing rates of individual
neurons, but does not exhibit any correlation (θij = 0 for i < j). Considering
pairwise interactions also decreases entropy as it constrains the model even more
(Spair). To assess the contribution of the pairwise interactions in the information
content of the population activity, we can compute the fraction of the entropy
reduction caused by considering pairwise interactions in the model as

γ(t) =
Sind(t)− Spair(t)

S0 − Spair(t)
. (5)

Next, the probability that all neurons are silent, i.e., the sparseness, is given by

psilence(t) = p(0, 0, . . . , 0|θt) = exp [−ψ(θt)] . (6)

Finally, the fluctuation of a population, or heat capacity, is the variance of the
information content. It represents the sensitivity of the model to changes in the
state vector θt. It is defined as

C(t) = 〈{− log p(x|θt)}2〉x|θt
− {〈− log p(x|θt)〉x|θt

}2. (7)

2.4 Assessment of Stimulus Coding

We also assessed the contribution of pairwise interactions in encoding the stim-
ulus orientation by comparing the neural responses to different stimulus ori-
entations. To do so, we compared the parameters of Ising models fitted to the
neural activity of monkeys exposed to gratings of different orientations. Since the
EM algorithm provides the posterior density of the state vector approximated
as a Gaussian, we computed the Bhattacharyya distance between the posterior
densities. The Bhattacharyya distance between two Gaussians N (µ1,Σ1) and
N (µ2,Σ2) is given as

DB =
1

8
(µ1 − µ2)

′Σ−1(µ1 − µ2) +
1

2
log

(

detΣ√
detΣ1 detΣ2

)

, (8)

where Σ = Σ1+Σ2

2
. We computed this distance at each time bin. The difference

in neural responses is quantified by summing the distances at every time bin.
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3 Results

3.1 Contributions of Interactions to Macroscopic Network

Properties

Using the time-dependent Ising model, we analyzed the population activity of
monkey V1 neurons exposed to an oriented grating stimulus. In total, 9 popula-
tions (3 per monkey) were separately analyzed. Results with time bins of 10 ms
will be shown here, but we found similar results with 5 and 20 ms. The Bayesian
algorithm used to fit the model gives the Gaussian-approximated posterior den-
sity of the parameters of the Ising model (Eq. 1) given the data, which allows us
to obtain the most probable state, or a maximum a posteriori (MAP) estimate,
and the credible interval of the estimate (Eq. 3). The fitted model can be used
to calculate dynamics of macroscopic properties of the neural populations.

Fig. 1 shows results from one exemplary population of 12 neurons. The spike
data was recorded 200 times from the same neurons under the same stimulus
conditions (here the stimulus orientation (φ) is 300◦). Fig. 1A Top shows the
time-steps (x-axis) during which each neuron of the population (y-axis) exhib-
ited spikes (black marks) for 3 exemplary trials. The average spike rate of this
population transiently increased about 60 milliseconds after the stimulus onset,
as expected for V1 neurons [13], and exhibited oscillatory activity in response
to the grating stimulus (Fig. 1A Bottom). It is thus important to take the rate
dynamics into account to assess the correlations among neurons. The state-space
Ising model adequately estimated the rate dynamics. Similar rates were observed
for other stimulus orientations and populations.

Snapshots of the estimated parameters of the Ising model are shown in
Fig. 1B Top. The colors of the nodes and edges show the values of the MAP esti-
mates for the first-order parameters (θi) and the second-order parameters (θij),
respectively. Only significant edges are shown, for which the value 0 is outside of
the 95% credible interval of the posterior density. The average MAP estimates
of the first and second order parameters of the dynamic Ising model can be ob-
served in Fig. 1B Bottom (black lines). While the first order parameters follow a
similar dynamic to that of the firing rate, the interaction parameters only vary
on a small scale and with no apparent oscillation.

Macroscopic measures of the population are shown in Fig. 1C. The black
lines are computed from the MAP estimates of the model parameters. The pale
shaded areas correspond to the interval between the 5% and 95% quantiles. To
compute the quantiles, we sampled θt at every time bin 1000 times from the
posterior and computed the macroscopic properties for every sample.

First, the entropy of the pairwise model (Spair) quantifies the information
that the population can carry using rates and pairwise interactions. That is to

say, the effective number of spiking patterns they can represent is 2
1

log2
Spair .

Typically, the entropy increases as the probability of spiking increases toward
0.5 (maximum entropy for independent neurons). However, the population ac-
tivity is constrained by pairwise interactions, which leads to a reduction of the
entropy from the independent assumption. In order to examine the contribution
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Fig. 1. A (Top) Simultaneous activity of 12 neurons with a 10 ms bin size at exemplary
trials from the total 200 trials. The stimulus (φ = 300◦) is presented from 0 s to 1.28 s
(Bottom) Empirical and estimated population spiking probability. B (Top) Snapshots
of the estimated parameters of the Ising model. The color of the nodes and edges
represent θi and θij . (Bottom) First-order time-dependent parameters averaged over
neurons (Top panel, black line), and second-order parameters averaged over all pairs
(Bottom panel, black line). Red lines correspond to trial-shuffled data. Vertical dashed
bars correspond to the timings of the snapshots. C (From top to bottom) Estimates
of the entropy, entropy reduction due to interactions, sparseness, and heat capacity
(Black lines) and their 90% credible intervals (Pale shaded area). The dark shaded
areas correspond to the 90% credible intervals obtained for trial-shuffled data.

of pairwise interactions in the entropy, we computed the fraction of the entropy
reduction caused by considering pairwise interactions in the model γ(t) (Eq. 5).
We found that the pairwise interactions explain approximately 2% of the differ-
ence of entropy between the pairwise Ising model and the uniform distribution.

To determine if the observed fraction of entropy γ is significant, we fitted Ising
models to surrogate data. In the surrogate data, the order of the experimental
trials was randomized for every neuron in order to destroy interactions. Results
are reported by the red lines and the dark shaded areas. The average of the θij
parameters (Fig. 1B Bottom) and the γ of the surrogate model being close to 0
confirms that shuffling the trials effectively removed pairwise interactions. The
surrogate model also accurately estimated the firing rates (see Fig. 1A Bottom).
By comparing the γ obtained with the original and surrogate data, we conclude
that there are significant pairwise interactions during the stimulus presentation,
as the credible intervals do not coincide.

We then examined how the pairwise interactions contribute to other macro-
scopic quantities of the population. The third panel of Fig. 1C displays the
sparseness, i.e., the probability of an all silent pattern (Eq. 6), and the fourth
panel displays the heat capacity (Eq. 7). In this example, the heat capacity was
clearly greater for the original model, indicating that interactions of neurons
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Fig. 2. Comparison between the properties obtained with original data (y-axis) and
trial-shuffled data (x-axis) from 3 monkeys exposed to gratings at 90◦ and 180◦. (From
top to bottom) Entropy reduction due to interactions, sparseness, and heat capacity.

significantly contribute to increasing the sensitivity of the population activity.
However, the effect on sparseness may not be obvious. To clarify, next we exam-
ined these macroscopic values using all populations.

Fig. 2 compares the macroscopic properties computed with the original and
surrogate data. Data points for every populations at every time step are dis-
played on this figure. As expected, the original models had a bigger γ. This is
because interactions were destroyed in the surrogate data. The original mod-
els also displayed significantly bigger sparseness and heat capacity (signed-rank
tests). Only results at φ = 90◦ and φ = 180◦ are shown, but the sparseness and
fluctuation were significantly greater for the original data for all orientations.

3.2 Differences in Neural Responses Caused by Different Stimuli

Next we compared models obtained for different stimulus orientations. This
should give an idea of how differently the neurons respond to different grat-
ings orientations. To measure the difference, we computed the Bhattacharyya
distance (Eq. 8) between the estimated distributions of the Ising model parame-
ters fitted to neural activity of monkeys when exposed to two different stimulus
orientations. For a given population, we summed the distances between the Ising
models computed at each time step for all possible pairs of stimulus orientations.
We represent the summed Bhattacharyya distance as a function of the differ-
ence between stimulus orientations (∆φ). We repeated the computations for all
populations (Fig.3A). The distances exhibited a maximum at ∆φ = 90◦ and a
minimum at ∆φ = 180. This means that the population activities were maxi-
mally different for two perpendicular stimuli. The stimuli separated by 180◦ have
the same spacial alignment, but their gratings move in opposite directions (e.g.,
right to left or left to right). Hence the minimum distances at 180◦ indicate less
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Fig. 3. A Average Bhattacharyya distance between distributions of parameters of Ising
models fitted to monkey V1 neural activity when exposed to sinusoidal gratings at
different orientations with respect to the difference of orientation (∆φ). B Comparison
of the Bhattacharyya distances obtained with models fitted to original data (y-axis)
and trial-shuffled data (x-axis) for all pairs of stimulus orientations separated by 90◦.
C Average Bhattacharyya distances with respect to the difference of orientation for
original data (full lines) and trial-shuffled data (dashed lines).

sensitivity of the population activity to the direction of the stimulus gratings,
which is expected from a population of simple cells.

In order to examine contributions of pairwise interactions to the Bhattacharyya
distances, the above procedure was also done for surrogate data. Fig. 3B shows
a comparison of the distances obtained at ∆φ = 90◦ for original and surrogate
data. The distances between original models are significantly greater (signed-
rank test). Significant increases of the distances were found for all ∆φ. Fig. 3C
displays the Bhattacharyya distances computed from original and surrogate
models for all ∆φ. The distances from original data (full lines) are consistently
larger than their corresponding surrogate result (dashed line). From this, we
conclude that the interactions contributed to increasing the differences in neu-
ral activity when the monkeys are exposed to different stimuli. We repeated
the same analysis with the Kullback-Leibler divergence between the estimated
observation models at different orientations and reached the same conclusions.

4 Discussion

We found a significant contribution of pairwise interactions to stimulus encod-
ing. Since the neural population activity is more different with respect to the
stimulus in the presence of pairwise interactions, the interactions should improve
the decoding of stimulus information. However, we found a small percentage of
entropy due to pairwise interactions (∼ 2%). While this may be caused by the
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Fig. 4. A (Top) Simultaneous activity of 36 neurons with a 10 ms bin size at exemplary
trials from the total 200 trials. The stimulus (φ = 300◦) is presented from 0 s to 1.28 s
(Bottom) Empirical and estimated population spiking probability. B (Top) Snapshots
of the estimated parameters of the Ising model. The color of the nodes and edges
represent θi and θij . (Bottom) First-order time-dependent parameters averaged over
neurons (Top panel), and second-order parameters averaged over all pairs (Bottom
panel). Vertical dashed bars correspond to the timings of the snapshots. C (From top

to bottom) Estimates of the entropy, entropy reduction due to interactions, sparseness,
and heat capacity. Black and red lines correspond to original and trial-shuffled data.

small number of neurons or by the use of a simple Gabor artificial stimuli in-
stead of correlated natural stimuli [5], considering the firing rate dynamics might
have successfully removed spurious correlations. Previous analyses based on the
stationary model may suffer from the spurious spike correlations caused by rate
covariations. Our analysis reveals that neurons exhibit near-independent activity
during stimulus presentation. This result is consistent with the efficient use of
population activity expected from the efficient coding hypothesis [2,7].

Donner et al. [4] introduced approximation methods (pseudo-likelihood com-
bined with TAP or Bethe approximation) to fit the state-space Ising model to
larger networks. We used these methods to fit models to 1 population of 36 neu-
rons per monkey (Fig. 4, the same monkey and stimulus orientations as shown
in Fig. 1). The results were consistent with those obtained in the exact analysis:
pairwise interactions had significant contributions to increasing sparseness and
sensitivity for all monkeys and orientations (signed-rank test). We chose to pro-
vide the results of an analysis without the approximations, but our conclusions
regarding sparseness and heat capacity are robust to the network size.

5 Conclusion

The neural interactions significantly contributed to shaping the activity of mon-
key V1 neurons when exposed to sinusoidal gratings. Neuron populations present
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significant sparseness and sensitivity due to the neurons’ interactions. Neural
activities are organized differently when neurons respond to different stimulus
orientations, and this difference is enhanced by the presence of neural interac-
tions. From this result, we expect that the decoding of the stimulus orientation
is facilitated by considering pairwise interactions of the neurons.
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