Skip to main content

Neuronal Asymmetries and Fokker-Planck Dynamics

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11141))

Abstract

Much of our recent work regards the development of schematic, neurocomputational models based on memory associativity to describe some processes associated with basic structures of mental functioning, such as neurosis, creativity, consciousness/unconsciousness, and psychoses. We have emphasized associative memory mechanisms, since they are central in the description of these processes by psychodynamical theories. In memory neural networks, such as the Hopfield or Boltzmann Machine models, the symmetry of synaptic connections is a condition for the existence of stationary states, although this assumption is biologically unrealistic. Many efforts to model stationary states of networks with asymmetric weights are mathematically complex and can usually be applied only to specific cases. We thus further explore a possible new approach to the asymmetry problem, based on studies of some characteristics of the behavior of these networks, which may be modeled by the Fokker-Planck formalism. Besides considering asymmetric interactions, we also relaxed other symmetries of our previous models, enriching the concomitant dynamics. Among other things, we identified the presence of limit cycles.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. de Carvalho, L.A.V., Mendes, D.Q., Wedemann, R.S.: Creativity and delusions: the dopaminergic modulation of cortical maps. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Dongarra, J.J., Zomaya, A.Y., Gorbachev, Y.E. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 511–520. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44860-8_53

    Chapter  Google Scholar 

  2. Wedemann, R.S., Donangelo, R., Carvalho, L.A.V.: Generalized Memory Associativity in a Network Model for the Neuroses. Chaos 19, 015116-(1–11) (2009)

    Article  MathSciNet  Google Scholar 

  3. Wedemann, R.S., de Carvalho, L.A.V.: Some things psychopathologies can tell Us about consciousness. In: Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G. (eds.) ICANN 2012. LNCS, vol. 7552, pp. 379–386. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33269-2_48

    Chapter  Google Scholar 

  4. Siddiqui, M., Wedemann, R.S., Jensen, H.J.: Avalanches and generalized memory associativity in a network model for conscious and unconscious mental functioning. Physica A 490, 127–138 (2018)

    Article  MathSciNet  Google Scholar 

  5. Freud, S.: Introductory Lectures on Psycho-Analysis. Standard Edition. W. W. Norton and Company, New York - London (1966). First German edition (1917)

    Google Scholar 

  6. Kandel, E.: Psychiatry, Psychoanalysis, and the New Biology of Mind. American Psychiatric Publishing Inc., Washington D.C., London (2005)

    Google Scholar 

  7. Shedler, J.: The efficacy of psychodynamic psychotherapy. Am. Psychol. 65(2), 98–109 (2010)

    Article  Google Scholar 

  8. Cleeremans, A., Timmermans, B., Pasquali, A.: Consciousness and metarepresentation: a computational sketch. Neural Netw. 20, 1032–1039 (2007)

    Article  Google Scholar 

  9. Taylor, J.G., Villa, A.E.P.: The “Conscious I”: a neuroheuristic approach to the Mind. In: Baltimore, D., Dulbecco, R., Francois, J., Levi-Montalcini, R. (eds.) Frontiers of Life, pp. 349–368. Academic Press (2001)

    Google Scholar 

  10. Taylor, J.G.: A neural model of the loss of self in schizophrenia. Schizophrenia Bull. 37(6), 1229–1247 (2011)

    Article  Google Scholar 

  11. Hertz, J.A., Krogh, A., Palmer, R.G. (eds.): Introduction to the Theory of Neural Computation. Lecture Notes, vol. I. Perseus Books, Cambridge (1991)

    Google Scholar 

  12. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE Trans. Syst., Man, Cybern. 13, 815–826 (1983)

    Article  MathSciNet  Google Scholar 

  13. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Physica A 233, 395–406 (1996)

    Article  Google Scholar 

  14. Wedemann, R.S., Plastino, A.R.: Asymmetries in synaptic connections and the nonlinear fokker-planck formalism. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9886, pp. 19–27. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44778-0_3

    Chapter  Google Scholar 

  15. Wedemann, R.S., Plastino, A.R., Tsallis, C.: Curl forces and the nonlinear Fokker-Planck equation. Phys. Rev. E 94, 062105-1-10 (2016)

    Google Scholar 

  16. Wedemann, R.S., Plastino, A.R.: q-Maximum entropy distributions and memory neural networks. In: Lintas, A., Rovetta, S., Verschure, P.F.M.J., Villa, A.E.P. (eds.) ICANN 2017. LNCS, vol. 10613, pp. 300–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68600-4_35

    Chapter  Google Scholar 

  17. Parisi, G.: Asymmetric neural networks and the process of learning. J. Phys. A: Math. Gen. 19, L675–L680 (1986)

    Article  MathSciNet  Google Scholar 

  18. Xu, Z.B., Hu, G.Q., Kwong, C.P.: Asymmetric hopfield-type networks: theory and applications. Neural Netw. 9(3), 483–501 (1996)

    Article  Google Scholar 

  19. Hopfield, J.J.: Neurons with graded responses have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci., USA 81, 3088–3092 (1988)

    Article  Google Scholar 

  20. Martinez, S., Plastino, A.R., Plastino, A.: Nonlinear Fokker-Planck equations and generalized entropies. Physica A 259(1–2), 183–192 (1998)

    Article  Google Scholar 

  21. Franck, T.D.: Nonlinear Fokker-Planck Equations: Fundamentals and Applications. Springer, Heidelberg (2005). https://doi.org/10.1007/b137680

    Book  Google Scholar 

  22. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics, Approaching a Complex World. Springer, New York (2009). https://doi.org/10.1007/978-0-387-85359-8

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the Brazilian National Research Council (CNPq), the Rio de Janeiro State Research Foundation (FAPERJ) and the Brazilian agency which funds graduate studies (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roseli S. Wedemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Luca, V.T.F., Wedemann, R.S., Plastino, A.R. (2018). Neuronal Asymmetries and Fokker-Planck Dynamics. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds) Artificial Neural Networks and Machine Learning – ICANN 2018. ICANN 2018. Lecture Notes in Computer Science(), vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-01424-7_69

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-01423-0

  • Online ISBN: 978-3-030-01424-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics